Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Strongyloidiasis

Abstract

Strongyloidiasis is a neglected tropical disease caused primarily by the roundworm Strongyloides stercoralis. Strongyloidiasis is most prevalent in Southeast Asia and the Western Pacific. Although cases have been documented worldwide, global prevalence is largely unknown due to limited surveillance. Infection of the definitive human host occurs via direct skin penetration of the infective filariform larvae. Parasitic females reside in the small intestine and reproduce via parthenogenesis, where eggs hatch inside the host before rhabditiform larvae are excreted in faeces to begin the single generation free-living life cycle. Rhabditiform larvae can also develop directly into infectious filariform larvae in the gut and cause autoinfection. Although many are asymptomatic, infected individuals may report a range of non-specific gastrointestinal, respiratory or skin symptoms. Autoinfection may cause hyperinfection and disseminated strongyloidiasis in immunocompromised individuals, which is often fatal. Diagnosis requires direct examination of larvae in clinical specimens, positive serology or nucleic acid detection. However, there is a lack of standardization of techniques for all diagnostic types. Ivermectin is the treatment of choice. Control and elimination of strongyloidiasis will require a multifaceted, integrated approach, including highly sensitive and standardized diagnostics, active surveillance, health information, education and communication strategies, improved water, sanitation and hygiene, access to efficacious treatment, vaccine development and better integration and acknowledgement in current helminth control programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life cycle of Strongyloides spp.
Fig. 2: Global distribution of Strongyloides stercoralis infection.
Fig. 3: Clinical images from patients with Strongyloides stercoralis infection.
Fig. 4: Differentiating between hookworm and Strongyloides stercoralis larvae based on morphology.

Similar content being viewed by others

References

  1. Olsen, A. et al. Strongyloidiasis – the most neglected of the neglected tropical diseases? Trans. R. Soc. Trop. Med. Hyg. 103, 967–972 (2009).

    Article  PubMed  Google Scholar 

  2. Schär, F. et al. Strongyloides stercoralis genotypes in humans in Cambodia. Parasitol. Int. 63, 533–536 (2014).

    Article  PubMed  Google Scholar 

  3. Buonfrate, D. et al. The global prevalence of Strongyloides stercoralis infection. Pathogens 9, 468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thanchomnang, T. et al. First molecular identification of Strongyloides fuelleborni in long-tailed macaques in Thailand and Lao People’s Democratic Republic reveals considerable genetic diversity. J. Helminthol. 93, 608–615 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Ashford, R. W., Barnish, G. & Viney, M. E. Strongyloides fuelleborni kellyi: infection and disease in Papua New Guinea. Parasitol. Today 8, 314–318 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Gordon, C. A. et al. HTLV-I and Strongyloides in Australia: the worm lurking beneath. J. Adv. parasitol. 111, 119–201 (2021).

    Article  Google Scholar 

  7. Angheben, A. et al. Acute strongyloidiasis in Italian tourists returning from Southeast Asia. J. Travel. Med. 18, 138–140 (2011).

    Article  PubMed  Google Scholar 

  8. Australian Refugee Health Practice Guide. Refugee health assessment. Refugee Health Guide refugeehealthguide.org.au/refugee-health-assessment/#Investigations (2023).

  9. Thompson, C. & Boggild, A. K. Strongyloidiasis in immigrants and refugees in Canada. CMAJ 187, 1389 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maskery, B. et al. Economic analysis of the impact of overseas and domestic treatment and screening options for intestinal helminth infection among US-bound refugees from Asia. PLoS Negl. Trop. Dis. 10, e0004910 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beknazarova, M., Whiley, H. & Ross, K. Strongyloidiasis: a disease of socioeconomic disadvantage. Int. J. Env. Res. Public. Health 13, 517 (2016).

    Article  Google Scholar 

  12. Centers for Disease Control and Prevention. Parasites – Strongyloides. CDC www.cdc.gov/parasites/strongyloides/health_professionals/index.html#:~:Text=The%20gold%20standard%20for%20the,reach%20a%20sensitivity%20of%20100%25 (2023).

  13. Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).

    Article  PubMed  Google Scholar 

  14. Buonfrate, D. et al. Current pharmacotherapeutic strategies for strongyloidiasis and the complications in its treatment. Expert. Opin. Pharmacother. 23, 1617–1628 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Potters, I., Micalessi, I., Van Esbroeck, M., Gils, S. & Theunissen, C. A rare case of imported Strongyloides fuelleborni infection in a Belgian student. Clin. Infec Prac. 7–8, 100031 (2020).

    Article  Google Scholar 

  16. Thanchomnang, T. et al. First molecular identification and genetic diversity of Strongyloides stercoralis and Strongyloides fuelleborni in human communities having contact with long-tailed macaques in Thailand. Parasitol. Res. 116, 1917–1923 (2017).

    Article  PubMed  Google Scholar 

  17. Richins, T. et al. Genetic characterization of Strongyloides fuelleborni infecting free-roaming African vervets (Chlorocebus aethiops sabaeus) on the Caribbean island of St. Kitts. Int. J. Parasitol. Parasites Wildl. 20, 153–161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. King, S. E. & Mascie-Taylor, C. G. Strongyloides fuelleborni kellyi and other intestinal helminths in children from Papua New Guinea: associations with nutritional status and socioeconomic factors. P N. G. Med. J. 47, 181–191 (2004).

    PubMed  Google Scholar 

  19. Brown, R. C. & Girardeau, H. F. Transmammary passage of Strongyloides sp. larvae in the human host. Am. J. Trop. Med. Hyg. 26, 215–219 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Jaleta, T. G. et al. Different but overlapping populations of Strongyloides stercoralis in dogs and humans – dogs as a possible source for zoonotic strongyloidiasis. PLoS Negl. Trop. Dis. 11, e0005752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buonfrate, D., Bradbury, R. S., Watts, M. R. & Bisoffi, Z. Human strongyloidiasis: complexities and pathways forward. Clin. Microbiol. Rev. 36, e0003323 (2023).

    Article  PubMed  Google Scholar 

  22. Schär, F. et al. Strongyloides stercoralis: global distribution and risk factors. PLoS Negl. Trop. Dis. 7, e2288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chan, A. H. E. et al. Prevalence of Strongyloides in Southeast Asia: a systematic review and meta-analysis with implications for public health and sustainable control strategies. Infect. Dis. Poverty 12, 83 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hailu, T., Nibret, E., Amor, A. & Munshea, A. Strongyloidiasis in Africa: systematic review and meta-analysis on prevalence, diagnostic methods, and study settings. Biomed. Res. Int. 2020, 2868564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gordon, C. A. et al. Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines. Int. J. Parasitol. 45, 477–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Campbell, S. J. et al. Investigations into the association between soil-transmitted helminth infections, haemoglobin and child development indices in Manufahi District, Timor-Leste. Parasit. Vectors 10, 192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shield, J. et al. Seropositivity and geographical distribution of Strongyloides stercoralis in Australia: a study of pathology laboratory data from 2012-2016. PLoS Negl. Trop. Dis. 15, e0009160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singer, R. & Sarkar, S. Modeling strongyloidiasis risk in the United States. Int. J. Infect. Dis. 100, 366–372 (2020).

    Article  PubMed  Google Scholar 

  29. Martinez-Perez, A. & Lopez-Velez, R. Is Strongyloidiasis endemic in Spain? PLoS Negl. Trop. Dis. 9, e0003482 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buonfrate, D. et al. Epidemiology of Strongyloides stercoralis in northern Italy: results of a multicentre case-control study, February 2013 to July 2014. Eur. Surveill. 21, 30310 (2016).

    Article  Google Scholar 

  31. Ottino, L. et al. Autochthonous human and canine Strongyloides stercoralis infection in Europe: report of a human case in an Italian teen and systematic review of the literature. Pathogens 9, 439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bronstein, A. M., Lukashev, A. N., Maximova, M. S. & Sacharova, T. V. The autochthonous cases of acute strongyloidiasis in the Moscow region. Germs 11, 116–119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fraser, J. A case report suggestive of strongyloidiasis infection occurring in temperate Australia. RRH 19, 4787 (2019).

    PubMed  Google Scholar 

  34. World Health Organization. Control of neglected tropical diseases: strongyloidiasis. WHO www.who.int/teams/control-of-neglected-tropical-diseases/soil-transmitted-helminthiases/strongyloidiasis (2023).

  35. Al-Mekhlafi, H. M. et al. Prevalence and risk factors of Strongyloides stercoralis infection among Orang Asli schoolchildren: new insights into the epidemiology, transmission and diagnosis of strongyloidiasis in Malaysia. Parasitology 146, 1602–1614 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Khieu, V. et al. Prevalence and risk factors of Strongyloides stercoralis in Takeo Province, Cambodia. Parasit. Vectors 7, 221 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. White, M. A. F., Whiley, H. & Ross, K. E. A review of Strongyloides spp. environmental sources worldwide. Pathogens 8, 91 (2019).

    Article  CAS  Google Scholar 

  38. Jongwutiwes, U., Waywa, D., Silpasakorn, S., Wanachiwanawin, D. & Suputtamongkol, Y. Prevalence and risk factors of acquiring Strongyloides stercoralis infection among patients attending a tertiary hospital in Thailand. Pathog. Glob. Health 108, 137–140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laoraksawong, P. et al. Current high prevalences of Strongyloides stercoralis and Opisthorchis viverrini infections in rural communities in northeast Thailand and associated risk factors. BMC Public. Health 18, 940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Punsawad, C., Phasuk, N., Thongtup, K., Nagavirochana, S. & Viriyavejakul, P. Prevalence of parasitic contamination of raw vegetables in Nakhon Si Thammarat province, southern Thailand. BMC Public. Health 19, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kudah, C., Sovoe, S. & Baiden, F. Parasitic contamination of commonly consumed vegetables in two markets in Ghana. Ghana. Med. J. 52, 88–93 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Durrheim, D. N. Simply wearing footwear could interrupt transmission of Strongyloides stercoralis. BMJ 347, f5219 (2013).

    Article  PubMed  Google Scholar 

  43. Czachor, J. S. & Jonas, A. P. Transmission of Strongyloides steracolis person to person. J. Travel. Med. 7, 211–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mendez, P., Walsh, B. & Hallem, E. A. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol. Biochem. Parasitol. 250, 111491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez Gallego, S. et al. Identification of an astacin-like metallo-proteinase transcript from the infective larvae of Strongyloides stercoralis. Parasitol. Int. 54, 123–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Schad, G. A., Aikens, L. M. & Smith, G. Strongyloides stercoralis: is there a canonical migratory route through the host? J. Parasitol. 75, 740–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Bonne-Année, S., Hess, J. A. & Abraham, D. Innate and adaptive immunity to the nematode Strongyloides stercoralis in a mouse model. Immunol. Res. 51, 205–214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nutman, T. B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology 144, 263–273 (2017).

    Article  PubMed  Google Scholar 

  49. Geri, G. et al. Strongyloides stercoralis hyperinfection syndrome: a case series and a review of the literature. Infection 43, 691–698 (2015).

    Article  PubMed  Google Scholar 

  50. McDonald, H. H. & Moore, M. Strongyloides stercoralis hyperinfection. N. Engl. J. Med. 376, 2376 (2017).

    Article  PubMed  Google Scholar 

  51. Pedersen, A. A., Hartmeyer, G. N., Stensvold, C. R. & Martin-Iguacel, R. Strongyloides stercoralis hyperinfection syndrome with cerebral involvement. BMJ Case Rep. 15, e247032 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weatherhead, J. E. & Mejia, R. Immune response to infection with Strongyloides stercoralis in patients with infection and hyperinfection. Curr. Tropical Med. Rep. 1, 229–233 (2014).

    Article  Google Scholar 

  53. Cantacessi, C. & Gasser, R. B. SCP/TAPS proteins in helminths – where to from now? Mol. Cell. Probes 26, 54–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Rodrigues, R. M. et al. IgG1, IgG4, and IgE antibody responses in human strongyloidiasis by ELISA using Strongyloides ratti saline extract as heterologous antigen. Parasitol. Res. 101, 1209–1214 (2007).

    Article  PubMed  Google Scholar 

  55. James, L. K. & Till, S. J. Potential mechanisms for IgG4 inhibition of immediate hypersensitivity reactions. Curr. Allergy Asthma Rep. 16, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kerepesi, L. A., Hess, J. A., Nolan, T. J., Schad, G. A. & Abraham, D. Complement component C3 is required for protective innate and adaptive immunity to larval Strongyloides stercoralis in mice. J. Immunol. 176, 4315–4322 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Keiser, P. B. & Nutman, T. B. Strongyloides stercoralis in the immunocompromised population. Clin. Microbiol. Rev. 17, 208–217 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vadlamudi, R. S., Chi, D. S. & Krishnaswamy, G. Intestinal strongyloidiasis and hyperinfection syndrome. Clin. Mol. Allergy 4, 8 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Utzinger, J. et al. Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med. Wkly. 142, w13727 (2012).

    PubMed  Google Scholar 

  60. Buonfrate, D. et al. Severe strongyloidiasis: a systematic review of case reports. BMC Infect. Dis. 13, 78 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. World Health Organization. A parasitic infection that can turn fatal with administration of corticosteroids. WHO www.who.int/news/item/17-12-2020-a-parasitic-infection-that-can-turn-fatal-with-administration-of-corticosteroids (2020).

  62. Herbert, D. R., Stoltzfus, J. D. C., Rossi, H. L. & Abraham, D. Is Strongyloides stercoralis hyperinfection induced by glucocorticoids a result of both suppressed host immunity and altered parasite genetics? Mol. Biochem. Parasitol. 251, 111511 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Lok, J. B., Kliewer, S. A. & Mangelsdorf, D. J. The ‘nuclear option’ revisited: confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Mol. Biochem. Parasitol. 250, 111490 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Schierhout, G. et al. Association between HTLV-1 infection and adverse health outcomes: a systematic review and meta-analysis of epidemiological studies. Lancet Infect. Dis. 20, 133–143 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Eschbach, M. L. et al. Strongyloides ratti infection induces transient nematode-specific Th2 response and reciprocal suppression of IFN-γ production in mice. Parasite Immunol. 32, 370–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ye, L., Taylor, G. P. & Rosadas, C. Human T-cell lymphotropic virus type 1 and Strongyloides stercoralis co-infection: a systematic review and meta-analysis. Front. Med. 9, 832430 (2022).

    Article  Google Scholar 

  67. Porto, M. A., Alcântara, L. M., Leal, M., Castro, N. & Carvalho, E. M. Atypical clinical presentation of strongyloidiasis in a patient co-infected with human T cell lymphotrophic virus type I. Am. J. Trop. Med. Hyg. 72, 124–125 (2005).

    Article  PubMed  Google Scholar 

  68. Salles, F. et al. Treatment of strongyloidiasis in HTLV-1 and Strongyloides stercoralis coinfected patients is associated with increased TNFα and decreased soluble IL2 receptor levels. Trans. R. Soc. Trop. Med. Hyg. 107, 526–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Montes, M. et al. Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen. PLoS Negl. Trop. Dis. 3, e456 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Satoh, M. et al. Reduced efficacy of treatment of strongyloidiasis in HTLV-I carriers related to enhanced expression of IFN-γ and TGF-β1. Clin. Exp. Immunol. 127, 354–359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Akanksha, K. et al. Prevalence of soil-transmitted helminth infections in HIV patients: a systematic review and meta-analysis. Sci. Rep. 13, 11055 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmadpour, E. et al. Strongyloides stercoralis infection in human immunodeficiency virus-infected patients and related risk factors: a systematic review and meta-analysis. Transbound. Emerg. Dis. 66, 2233–2243 (2019).

    Article  PubMed  Google Scholar 

  73. Viney, M. E. et al. Why does HIV infection not lead to disseminated strongyloidiasis? J. Infect. Dis. 190, 2175–2180 (2004).

    Article  PubMed  Google Scholar 

  74. Siegel, M. O. & Simon, G. L. Is human immunodeficiency virus infection a risk factor for Strongyloides stercoralis hyperinfection and dissemination. PLoS Negl. Trop. Dis. 6, e1581 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Seeger, D., Cornejo Cisneros, E., Lucar, J. & Denyer, R. Strongyloides and COVID-19: challenges and opportunities for future research. Trop. Med. Infect. Dis. 8, 127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lier, A. J. et al. Case report: disseminated strongyloidiasis in a patient with COVID-19. Am. J. Trop. Med. Hyg. 103, 1590–1592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, J. M. & Sivasubramanian, G. Strongyloides hyperinfection syndrome among COVID-19 patients treated with corticosteroids. Emerg. Infect. Dis. 28, 1531–1533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Souza, A. et al. Modulation of circulating cytokine production in alcoholic patients infected with Strongyloides stercoralis. Parasite Immunol. 45, e12977 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. de Souza, J. N. et al. Strongyloides stercoralis in alcoholic patients: implications of alcohol intake in the frequency of infection and parasite load. Pathogens 9, 422 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fitzsimmons, C. M., Falcone, F. H. & Dunne, D. W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front. Immunol. 5, 61 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barve, S., Chen, S. Y., Kirpich, I., Watson, W. H. & McClain, C. Development, prevention, and treatment of alcohol-induced organ injury: the role of nutrition. Alcohol. Res. 38, 289–302 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Bujanda, L. The effects of alcohol consumption upon the gastrointestinal tract. Am. J. Gastroenterol. 95, 3374–3382 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Caumes, E. & Keystone, J. S. Acute strongyloidiasis: a rarity. Chronic strongyloidiasis: a time bomb! J. Travel. Med. 18, 71–72 (2011).

    Article  PubMed  Google Scholar 

  84. Freedman, D. O. Experimental infection of human subject with Strongyloides species. Rev. Infect. Dis. 13, 1221–1226 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Arthur, R. P. & Shelley, W. B. Larva currens; a distinctive variant of cutaneous larva migrans due to Strongyloides stercoralis. AMA Arch. Derm. 78, 186–190 (1958).

    Article  CAS  PubMed  Google Scholar 

  86. Tanaka, H. Experimental and epidemiological studies on strongyloidiasis of Amami Oshima island. Jpn. J. Exp. Med. 28, 159–182 (1958).

    CAS  PubMed  Google Scholar 

  87. Kunst, H. et al. Parasitic infections of the lung: a guide for the respiratory physician. Thorax 66, 528–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Bernheim, A. & McLoud, T. A review of clinical and imaging findings in eosinophilic lung diseases. AJR Am. J. Roentgenol. 208, 1002–1010 (2017).

    Article  PubMed  Google Scholar 

  89. Yeung, S., Bharwada, Y., Bhasker, S. & Boggild, A. Strongyloidiasis: what every gastroenterologist needs to know. Ther. Adv. Chronic Dis. 13, 20406223221137499 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Buonfrate, D., Fittipaldo, A., Vlieghe, E. & Bottieau, E. Clinical and laboratory features of Strongyloides stercoralis infection at diagnosis and after treatment: a systematic review and meta-analysis. Clin. Microbiol. Infect. 27, 1621–1628 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Ming, D. K. et al. Clinical and diagnostic features of 413 patients treated for imported strongyloidiasis at the Hospital for Tropical Diseases, London. Am. J. Trop. Med. Hyg. 101, 428–431 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Salvador, F. et al. Imported strongyloidiasis: data from 1245 cases registered in the +REDIVI Spanish collaborative network (2009-2017). PLoS Negl. Trop. Dis. 13, e0007399 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Khieu, V. et al. Strongyloides stercoralis is a cause of abdominal pain, diarrhea and urticaria in rural Cambodia. BMC Res. Notes 6, 200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cruz, R. J. Jr, Vincenzi, R. & Ketzer, B. M. Duodenal obstruction – an unusual presentation of Strongyloides stercoralis enteritis: a case report. World J. Emerg. Surg. 5, 23 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. El Hajj, W., Nakad, G. & Abou Rached, A. Protein loosing enteropathy secondary to strongyloidiasis: case report and review of the literature. Case Rep. Gastrointest. Med. 2016, 6831854 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Junare, P. R. & Udgirkar, S. S. An uncommon presentation of strongyloidiasis. Indian. J. Med. Res. 152, S12–S13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gutierrez, Y. et al. Strongyloides stercoralis eosinophilic granulomatous enterocolitis. Am. J. Surg. Pathol. 20, 603–612 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Saqib, S. U., Sood, S., Wong, L. & Patel, A. Strongyloides colitis, a rare but important mimic of Crohn’s disease, resulting in coma and multi-organ failure: a case report. Surg. Case Rep. 8, 211 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gomez-Hinojosa, P., García-Encinas, C., Carlin-Ronquillo, A., Chancafe-Morgan, R. P. & Espinoza-Ríos, J. Strongyloides infection mimicking inflammatory bowel disease. Rev. Gastroenterol. Mex. 85, 366–368 (2020).

    CAS  Google Scholar 

  100. Qu, Z., Kundu, U. R., Abadeer, R. A. & Wanger, A. Strongyloides colitis is a lethal mimic of ulcerative colitis: the key morphologic differential diagnosis. Hum. Pathol. 40, 572–577 (2009).

    Article  PubMed  Google Scholar 

  101. Boscá Watts, M. M. et al. IBD or strongyloidiasis? Rev. Esp. Enferm. Dig. 108, 516–520 (2016).

    PubMed  Google Scholar 

  102. Poveda, J., El-Sharkawy, F., Arosemena, L. R., Garcia-Buitrago, M. T. & Rojas, C. P. Strongyloides colitis as a harmful mimicker of inflammatory bowel disease. Case Rep. Pathol. 2017, 2560719 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Forrer, A. et al. Strongyloides stercoralis is associated with significant morbidity in rural Cambodia, including stunting in children. PLoS Negl. Trop. Dis. 11, e0005685 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Becker, S. L. et al. Diagnosis, clinical features, and self-reported morbidity of Strongyloides stercoralis and hookworm infection in a co-endemic setting. PLoS Negl. Trop. Dis. 5, e1292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Martinez-Pérez, A. et al. Clinical features associated with strongyloidiasis in migrants and the potential impact of immunosuppression: a case control study. Pathogens 9, 507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tamarozzi, F. et al. Morbidity associated with chronic Strongyloides stercoralis infection: a systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 100, 1305–1311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zubrinich, C. M., Puy, R. M., O’Hehir, R. E. & Hew, M. Strongyloides infection as a reversible cause of chronic urticaria. J. Asthma Allergy 12, 67–69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Showler, A. & Boggild, A. K. Strongyloidiasis presenting as larva currens 38 years after presumed exposure. J. Cutan. Med. Surg. 16, 433–435 (2012).

    Article  PubMed  Google Scholar 

  109. Mokhlesi, B., Shulzhenko, O., Garimella, P. S., Kuma, L. & Monti, C. Pulmonary strongyloidiasis: the varied clinical presentations. Clin. Pulm. Med. 11, 6–13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nwokolo, C. & Imohiosen, E. A. Strongyloidiasis of respiratory tract presenting as “asthma”. BMJ 2, 153–154 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sen, P., Gil, C., Estrellas, B. & Middleton, J. R. Corticosteroid-induced asthma: a manifestation of limited hyperinfection syndrome due to Strongyloides stercoralis. South. Med. J. 88, 923–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Salam, R., Sharaan, A., Jackson, S. M., Solis, R. A. & Zuberi, J. Strongyloides hyperinfection syndrome: a curious case of asthma worsened by systemic corticosteroids. Am. J. Case Rep. 21, e925221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Salluh, J. I. et al. Cutaneous periumbilical purpura in disseminated strongyloidiasis in cancer patients: a pathognomonic feature of potentially lethal disease? Braz. J. Infect. Dis. 9, 419–424 (2005).

    Article  PubMed  Google Scholar 

  114. Mukaigawara, M. et al. Clinical characteristics of disseminated strongyloidiasis, Japan, 1975-2017. Emerg. Infect. Dis. 26, 401–408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Asdamongkol, N., Pornsuriyasak, P. & Sungkanuparph, S. Risk factors for strongyloidiasis hyperinfection and clinical outcomes. Southeast. Asian J. Trop. Med. Public. Health 37, 875–884 (2006).

    PubMed  Google Scholar 

  116. Tam, J. et al. Case report: central nervous system strongyloidiasis: two cases diagnosed antemortem. Am. J. Trop. Med. Hyg. 100, 130–134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Abanyie, F. A. et al. Donor-derived Strongyloides stercoralis infection in solid organ transplant recipients in the United States, 2009-2013. Am. J. Transpl. 15, 1369–1375 (2015).

    Article  CAS  Google Scholar 

  118. Woodring, J. H., Halfhill, H. II & Reed, J. C. Pulmonary strongyloidiasis: clinical and imaging features. AJR Am. J. Roentgenol. 162, 537–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, Y. A. et al. Epidemiology, clinical features, and outcomes of strongyloidiasis in Taiwan from 1988 to 2020: a case series and literature review. J. Microbiol. Immunol. Infect. 56, 172–181 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Barkati, S., Greenaway, C. & Libman, M. Strongyloidiasis-related lung involvement: too much of a bad thing. Curr. Opin. Infect. Dis. 36, 203–208 (2023).

    Article  PubMed  Google Scholar 

  121. Nabeya, D. et al. Pulmonary strongyloidiasis: assessment between manifestation and radiological findings in 16 severe strongyloidiasis cases. BMC Infect. Dis. 17, 320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Siddiqui, A. A. & Berk, S. L. Diagnosis of Strongyloides stercoralis infection. Clin. Infect. Dis. 33, 1040–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Link, K. & Orenstein, R. Bacterial complications of strongyloidiasis: Streptococcus bovis meningitis. South. Med. J. 92, 728–731 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. World Health Organization. Diagnostic methods for the control of strongyloidiasis, virtual meeting, 29 September 2020. WHO www.who.int/publications/i/item/9789240016538 (2021).

  125. Anamnart, W., Intapan, P. M. & Maleewong, W. Modified formalin-ether concentration technique for diagnosis of human strongyloidiasis. Korean J. Parasitol. 51, 743–745 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Knopp, S. et al. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania. Am. J. Trop. Med. Hyg. 90, 535–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Potter, A., Stephens, D. & De Keulenaer, B. Strongyloides hyper-infection: a case for awareness. Ann. Trop. Med. Parasitol. 97, 855–860 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Bisoffi, Z. et al. Diagnostic accuracy of five serologic tests for Strongyloides stercoralis infection. PLoS Negl. Trop. Dis. 8, e2640 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Norsyahida, A. et al. Laboratory detection of strongyloidiasis: IgG-, IgG4 - and IgE-ELISAs and cross-reactivity with lymphatic filariasis. Parasite Immunol. 35, 174–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Requena-Mendez, A. et al. The laboratory diagnosis and follow up of strongyloidiasis: a systematic review. PLoS Negl. Trop. Dis. 7, e2002 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Page, W. A., Dempsey, K. & McCarthy, J. S. Utility of serological follow-up of chronic strongyloidiasis after anthelminthic chemotherapy. Trans. R. Soc. Trop. Med. Hyg. 100, 1056–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Boscolo, M. et al. Evaluation of an indirect immunofluorescence assay for strongyloidiasis as a tool for diagnosis and follow-up. Clin. Vaccin. Immunol. 14, 129–133 (2007).

    Article  CAS  Google Scholar 

  133. Biggs, B. A. et al. Management of chronic strongyloidiasis in immigrants and refugees: is serologic testing useful? Am. J. Trop. Med. Hyg. 80, 788–791 (2009).

    Article  PubMed  Google Scholar 

  134. Salvador, F. et al. Usefulness of Strongyloides stercoralis serology in the management of patients with eosinophilia. Am. J. Trop. Med. Hyg. 90, 830–834 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Noordin, R. et al. A point-of-care cassette test for detection of Strongyloides stercoralis. Acta Trop. 226, 106251 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Tamarozzi, F. et al. Accuracy, acceptability, and feasibility of diagnostic tests for the screening of Strongyloides stercoralis in the field (ESTRELLA): a cross-sectional study in Ecuador. Lancet Glob. Health 11, e740–e748 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Yunus, M. H., Arifin, N., Balachandra, D., Anuar, N. S. & Noordin, R. Lateral flow dipstick test for serodiagnosis of strongyloidiasis. Am. J. Trop. Med. Hyg. 101, 432–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Noordin, R. et al. Evaluation of a rapid IgG4 lateral flow dipstick test to detect Strongyloides stercoralis infection in Northeast Thailand. Am. J. Trop. Med. Hyg. 105, 688–691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04999774?locStr=Ecuador&country=Ecuador&distance=50&cond=Strongyloidiasis&rank=1 (2022).

  140. Mounsey, K. et al. Use of dried blood spots to define antibody response to the Strongyloides stercoralis recombinant antigen NIE. Acta Trop. 138, 78–82 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eamudomkarn, C. et al. Epidemiology of strongyloidiasis determined by parasite-specific IgG detections by enzyme-linked immunosorbent assay on urine samples using Strongyloides stercoralis, S. ratti and recombinant protein (NIE) as antigens in Northeast Thailand. PLoS ONE 18, e0284305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wongphutorn, P. et al. Diagnostic performance of Strongyloides-specific IgG4 detection in urine for diagnosis of human strongyloidiasis. Parasit. Vectors 16, 298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sykes, A. M. & McCarthy, J. S. A coproantigen diagnostic test for Strongyloides infection. PLoS Negl. Trop. Dis. 5, e955 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Balachandra, D. et al. A new antigen detection ELISA for the diagnosis of Strongyloides infection. Acta Trop. 221, 105986 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Verweij, J. J. et al. Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Trans. R. Soc. Trop. Med. Hyg. 103, 342–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Pilotte, N. et al. Improved PCR-based detection of soil transmitted helminth infections using a next-generation sequencing approach to assay design. PLoS Negl. Trop. Dis. 10, e0004578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Iamrod, K. et al. Development and efficacy of droplet digital PCR for detection of Strongyloides stercoralis in stool. Am. J. Trop. Med. Hyg. 106, 312–319 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Watts, M. R. et al. A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am. J. Trop. Med. Hyg. 90, 306–311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buonfrate, D. et al. Accuracy of molecular biology techniques for the diagnosis of Strongyloides stercoralis infection – a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 12, e0006229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Buonfrate, D., Perandin, F., Formenti, F. & Bisoffi, Z. A retrospective study comparing agar plate culture, indirect immunofluorescence and real-time PCR for the diagnosis of Strongyloides stercoralis infection. Parasitology 144, 812–816 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Barda, B. et al. Evaluation of two DNA extraction methods for detection of Strongyloides stercoralis infection. J. Clin. Microbiol. 56, e01941-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Repetto, S. A. et al. An improved DNA isolation technique for PCR detection of Strongyloides stercoralis in stool samples. Acta Trop. 126, 110–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Formenti, F. et al. A diagnostic study comparing conventional and real-time PCR for Strongyloides stercoralis on urine and on faecal samples. Acta Trop. 190, 284–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Lodh, N. et al. Diagnosis of Strongyloides stercoralis: detection of parasite-derived DNA in urine. Acta Trop. 163, 9–13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Osiro, S., Hamula, C., Glaser, A., Rana, M. & Dunn, D. A case of Strongyloides hyperinfection syndrome in the setting of persistent eosinophilia but negative serology. Diagn. Microbiol. Infect. Dis. 88, 168–170 (2017).

    Article  PubMed  Google Scholar 

  156. Toledo, B. et al. Screening of Strongyloides infection using an ELISA test in transplant candidates. Clinics 74, e698 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Barrett, J. et al. The changing aetiology of eosinophilia in migrants and returning travellers in the Hospital for Tropical Diseases, London 2002-2015: an observational study. J. Infect. 75, 301–308 (2017).

    Article  PubMed  Google Scholar 

  158. Cañas García-Otero, E. et al. Clinical approach to imported eosinophilia [Spanish]. Enferm. Infecc. Microbiol. Clin. 34, 661–684 (2016).

    Article  PubMed  Google Scholar 

  159. Repetto, S. A. et al. Strongyloidiasis outside endemic areas: long-term parasitological and clinical follow-up after ivermectin treatment. Clin. Infect. Dis. 66, 1558–1565 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Castillo-Fernández, N. et al. Misleading eosinophil counts in migration-associated malaria: do not miss hidden helminthic co-infections. Travel. Med. Infect. Dis. 49, 102415 (2022).

    Article  PubMed  Google Scholar 

  161. Rojas, O. C., Montoya, A. M., Villanueva-Lozano, H. & Carrion-Alvarez, D. Severe strongyloidiasis: a systematic review and meta-analysis of 339 cases. Trans. R. Soc. Trop. Med. Hyg. 66, 682–696 (2023).

    Article  Google Scholar 

  162. Buonfrate et al. Progress towards the implementation of control programmes for strongyloidiasis in endemic areas: estimation of number of adults in need of ivermectin for strongyloidiasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 379, 20220433 (2024).

    Article  PubMed  Google Scholar 

  163. World Health Organization. Donating high‐quality medicines and diagnostics for the control of STH in children. WHO www.who.int/activities/donating-high-quality-medicines-and-diagnostics-for-the-control-of-sth-in-children (2020).

  164. Crump, A. & Ōmura, S. Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 87, 13–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Weil, G. J. et al. The safety of double- and triple-drug community mass drug administration for lymphatic filariasis: a multicenter, open-label, cluster-randomized study. PLoS Med. 16, e1002839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Barda, B. et al. Side benefits of mass drug administration for lymphatic filariasis on Strongyloides stercoralis prevalence on Pemba Island, Tanzania. Am. J. Trop. Med. Hyg. 97, 681–683 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ichimori, K. & Crump, A. Pacific collaboration to eliminate lymphatic filariasis. Trends Parasitol. 21, 441–444 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Colatrella, B. The mectizan donation program: 20 years of successful collaboration – a retrospective. Ann. Trop. Med. Parasitol. 102, 7–11 (2008).

    Article  PubMed  Google Scholar 

  169. Wong, M. T. J., Anuar, N. S., Noordin, R. & Tye, G. J. Soil-transmitted helminthic vaccines: where are we now? Acta Trop. 239, 106796 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Page, W. A., Judd, J. A., MacLaren, D. J. & Buettner, P. Integrating testing for chronic strongyloidiasis within the Indigenous adult preventive health assessment system in endemic communities in the Northern Territory, Australia: an intervention study. PLoS Negl. Trop. Dis. 14, e0008232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Davis, J. S. et al. Prevention of opportunistic infections in immunosuppressed patients in the tropical top end of the Northern Territory. Commun. Dis. Intell. Q. Rep. 27, 526–532 (2003).

    PubMed  Google Scholar 

  172. Requena-Méndez, A. et al. Evidence-based guidelines for screening and management of strongyloidiasis in non-endemic countries. Am. J. Trop. Med. Hyg. 97, 645–652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Carnino, L. et al. A practical approach to screening for Strongyloides stercoralis. Trop. Med. Infect. Dis. 6, 203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hürlimann, E., Hofmann, D. & Keiser, J. Ivermectin and moxidectin against soil-transmitted helminth infections. Trends Parasitol. 39, 272–284 (2023).

    Article  PubMed  Google Scholar 

  175. Henriquez-Camacho, C. et al. Ivermectin versus albendazole or thiabendazole for Strongyloides stercoralis infection. Cochrane Database Syst. Rev. 2016, Cd007745 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Buonfrate, D. et al. Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase 3, randomised controlled superiority trial. Lancet Infect. Dis. 19, 1181–1190 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Barda, B. et al. Efficacy of moxidectin versus ivermectin against Strongyloides stercoralis infections: a randomized, controlled noninferiority trial. Clin. Infect. Dis. 65, 276–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01570504?distance=50&cond=Strongyloidiasis&rank=1 (2018).

  179. Jittamala, P. et al. A systematic review and an individual patient data meta-analysis of ivermectin use in children weighing less than fifteen kilograms: is it time to reconsider the current contraindication? PLoS Negl. Trop. Dis. 15, e0009144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Brussee, J. M., Schulz, J. D., Coulibaly, J. T., Keiser, J. & Pfister, M. Ivermectin dosing strategy to achieve equivalent exposure coverage in children and adults. Clin. Pharmacol. Ther. 106, 661–667 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Buonfrate, D. Alternative treatment strategies for trichuriasis. Lancet Infect. Dis. 23, 266–267 (2023).

    Article  PubMed  Google Scholar 

  182. Centers for Disease Control and Prevention. Resources for health professionals. CDC www.cdc.gov/parasites/strongyloides/health_professionals/index.html (2023).

  183. Milton, P., Hamley, J. I. D., Walker, M. & Basáñez, M. G. Moxidectin: an oral treatment for human onchocerciasis. Expert. Rev. Anti Infect. Ther. 18, 1067–1081 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Hofmann, D. et al. Efficacy and safety of ascending doses of moxidectin against Strongyloides stercoralis infections in adults: a randomised, parallel-group, single-blinded, placebo-controlled, dose-ranging, phase 2a trial. Lancet Infect. Dis. 21, 1151–1160 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Hofmann, D., Smit, C., Sayasone, S., Pfister, M. & Keiser, J. Optimizing moxidectin dosing for Strongyloides stercoralis infections: insights from pharmacometric modeling. Clin. Transl. Sci. 15, 700–708 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Pfarr, K. M. et al. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit. Vectors 16, 82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sprecher, V. P. et al. Efficacy and safety of moxidectin compared with ivermectin against Strongyloides stercoralis infection in adults in Laos and Cambodia: a randomised, double-blind, non-inferiority, phase 2b/3 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00507-8 (2023).

    Article  PubMed  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04848688?distance=50&cond=Strongyloides&locStr=Cambodia&country=Cambodia&rank=1 (2022).

  189. Smit, C., Hofmann, D., Sayasone, S., Keiser, J. & Pfister, M. Characterization of the population pharmacokinetics of moxidectin in adults infected with Strongyloides stercoralis: support for a fixed-dose treatment regimen. Clin. Pharmacokinet. 61, 123–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Konecny, P. et al. Case report: subcutaneous ivermectin pharmacokinetics in disseminated strongyloides infection: plasma and postmortem analysis. Am. J. Trop. Med. Hyg. 99, 1580–1582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rose, C. E., Paciullo, C. A., Kelly, D. R., Dougherty, M. J. & Fleckenstein, L. L. Fatal outcome of disseminated strongyloidiasis despite detectable plasma and cerebrospinal levels of orally administered ivermectin. J. Parasitol. Res. 2009, 818296 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Edwards, G. Ivermectin: does P-glycoprotein play a role in neurotoxicity? Filaria J. 2, S8 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Leder, K. & Weller, P. F. Strongyloidiasis. UpToDate www.uptodate.com/contents/strongyloidiasis (2023).

  194. Zeitler, K. et al. Successful use of subcutaneous ivermectin for the treatment of Strongyloides stercoralis hyperinfection in the setting of small bowel obstruction and paralytic ileus in the immunocompromised population. BMJ Case Rep. 2018, bcr2017223138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Barrett, J., Broderick, C., Soulsby, H., Wade, P. & Newsholme, W. Subcutaneous ivermectin use in the treatment of severe Strongyloides stercoralis infection: two case reports and a discussion of the literature. J. Antimicrob. Chemother. 71, 220–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Marty, F. M. et al. Treatment of human disseminated strongyloidiasis with a parenteral veterinary formulation of ivermectin. Clin. Infect. Dis. 41, e5–e8 (2005).

    Article  PubMed  Google Scholar 

  197. Tarr, P. E. et al. Case report: rectal adminstration of ivermectin to a patient with Strongyloides hyperinfection syndrome. Am. J. Trop. Med. Hyg. 68, 453–455 (2003).

    Article  PubMed  Google Scholar 

  198. Bogoch, I. I. et al. Failure of ivermectin per rectum to achieve clinically meaningful serum levels in two cases of Strongyloides hyperinfection. Am. J. Trop. Med. Hyg. 93, 94–96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Pornsuriyasak, P., Niticharoenpong, K. & Sakapibunnan, A. Disseminated strongyloidiasis successfully treated with extended duration ivermectin combined with albendazole: a case report of intractable strongyloidiasis. Southeast. Asian J. Trop. Med. Public. Health 35, 531–534 (2004).

    PubMed  Google Scholar 

  200. Nuesch, R., Zimmerli, L., Stockli, R., Gyr, N. & Christoph Hatz, F. R. Imported strongyloidosis: a longitudinal analysis of 31 cases. J. Travel. Med. 12, 80–84 (2005).

    Article  PubMed  Google Scholar 

  201. Buonfrate, D. & Bisoffi, Z. Is ivermectin ineffective for strongyloidiasis? Clin. Infect. Dis. 67, 810–811 (2018).

    Article  PubMed  Google Scholar 

  202. Page, W. & Speare, R. Chronic strongyloidiasis – don’t look and you won’t find. Aust. Fam. Physician 45, 40–44 (2016).

    PubMed  Google Scholar 

  203. UNICEF. Stop stunting. UNICEF www.unicef.org/india/what-we-do/stop-stunting (2018).

  204. World Health Organization. Stunting in a nutshell. WHO www.who.int/news/item/19-11-2015-stunting-in-a-nutshell#:~:Text=Stunting%20is%20the%20impaired%20growth,WHO%20Child%20Growth%20Standards%20median (2015).

  205. World Health Organization. 2030 targets for soil-transmitted helminthiases control programmes. WHO https://www.who.int/publications/i/item/9789240000315 (2020).

  206. World Health Organization. Ending the neglect to attain the sustainable development goals – a road map for neglected tropical diseases 2021–2030 (WHO, 2020).

  207. Mascarini-Serra, L. Prevention of soil-transmitted helminth infection. J. Glob. Infect. Dis. 3, 175–182 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  208. World Health Organization. Soil-transmitted helminth infections. WHO www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (2023).

  209. Hürlimann, E. et al. Efficacy and safety of co-administered ivermectin and albendazole in school-aged children and adults infected with Trichuris trichiura in Côte d’Ivoire, Laos, and Pemba Island, Tanzania: a double-blind, parallel-group, phase 3, randomised controlled trial. Lancet Infect. Dis. 22, 123–135 (2022).

    Article  PubMed  Google Scholar 

  210. World Health Organization. Onchocerciasis. WHO www.who.int/news-room/fact-sheets/detail/onchocerciasis (2022).

  211. Tuersong, W. et al. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus. Parasit. Vectors 15, 159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Prichard, R. K. Ivermectin resistance and overview of the consortium for anthelmintic resistance SNPs. Expert. Opin. Drug. Discov. 2, S41–S52 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Rubin, E. J. Making the worm turn. N. Engl. J. Med. 388, 1908–1910 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Mrimi, E. C., Welsche, S., Ali, S. M., Hattendorf, J. & Keiser, J. Emodepside for Trichuris trichiura and hookworm infection. N. Engl. J. Med. 388, 1863–1875 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05017194 (2022).

  216. Kilarski, W. W. et al. Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nat. Commun. 10, 2895 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. De Kyvon, M.-A. et al. Linear cutaneous erythema in a patient with amyotrophic lateral sclerosis. Clin. Infect. Dis. 66, 1637–1638 (2018).

    Article  Google Scholar 

  218. Ofosu, A., Higgins, J., Frye, J. S., Kumari, R. & Barakat, M. T. Strongyloides superinfection after liver transplantion. Digestive Dis. Sci. 66, 2178–2182 (2021).

    Article  Google Scholar 

  219. DPDx. Strongyloidiasis. CDC https://www.cdc.gov/dpdx/strongyloidiasis/index.html (2019).

  220. DPDx. Hookworm (intestinal). CDC https://www.cdc.gov/dpdx/hookworm/index.html (2019).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.A.G. and J.U.); Epidemiology (C.A.G. and J.U.); Mechanisms/pathophysiology (S.M. and S.L.B.); Diagnosis, screening, and prevention (C.A.G., S.M. and S.L.B.); Management (V.K., D.J.G., J.K. and S.L.B.); Quality of life (J.U. and D.J.G.); Outlook (C.A.G., J.U., V.K., D.J.G., S.M., J.K. and S.L.B.); Overview of the Primer (C.A.G.).

Corresponding author

Correspondence to Catherine A. Gordon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks S. Babu, R. Gryschek, H. Maruyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, C.A., Utzinger, J., Muhi, S. et al. Strongyloidiasis. Nat Rev Dis Primers 10, 6 (2024). https://doi.org/10.1038/s41572-023-00490-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00490-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology