Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Achalasia

Abstract

Achalasia is a rare disorder of the oesophageal smooth muscle characterized by impaired relaxation of the lower oesophageal sphincter (LES) and absent or spastic contractions in the oesophageal body. The key pathophysiological mechanism is loss of inhibitory nerve function that probably results from an autoimmune attack targeting oesophageal myenteric nerves through cell-mediated and, possibly, antibody-mediated mechanisms. Achalasia incidence and prevalence increase with age, but the disorder can affect all ages and both sexes. Cardinal symptoms consist of dysphagia, regurgitation, chest pain and weight loss. Several years can pass between symptom onset and an achalasia diagnosis. Evaluation starts with endoscopy to rule out structural causes, followed by high-resolution manometry and/or barium radiography. Functional lumen imaging probe can provide complementary evidence. Achalasia subtypes have management and prognostic implications. Although symptom questionnaires are not useful for diagnosis, the Eckardt score is a simple symptom scoring scale that helps to quantify symptom response to therapy. Oral pharmacotherapy is not particularly effective. Botulinum toxin injection into the LES can temporize symptoms and function as a bridge to definitive therapy. Pneumatic dilation, per-oral endoscopic myotomy and laparoscopic Heller myotomy can provide durable symptom benefit. End-stage achalasia with a dilated, non-functioning oesophagus may require oesophagectomy or enteral feeding into the stomach. Long-term complications can, rarely, include oesophageal cancer, but surveillance recommendations have not been established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normal oesophageal physiology and innervation.
Fig. 2: Oesophageal manifestations and natural history of achalasia.
Fig. 3: Achalasia subtypes based on high-resolution manometry.
Fig. 4: Two possible pathways of pathogenesis differentiate achalasia subtypes.
Fig. 5: Diagnostic and management algorithm for achalasia.
Fig. 6: Adjunctive tests in the diagnosis of achalasia.

Similar content being viewed by others

References

  1. Pandolfino, J. E. & Gawron, A. J. Achalasia: a systematic review. JAMA 313, 1841–1852 (2015).

    PubMed  Google Scholar 

  2. Vaezi, M. F. et al. ACG clinical guidelines: diagnosis and management of achalasia. Am. J. Gastroenterol. 115, 1393–1411 (2020).

    PubMed  Google Scholar 

  3. Yadlapati, R. et al. Esophageal motility disorders on high-resolution manometry: Chicago classification version 4.0((c)). Neurogastroenterol. Motil. 33, e14058 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Gergely, M. et al. Duration of symptoms and manometric parameters offer clues to diagnosis of pseudoachalasia. Neurogastroenterol. Motil. 33, e13965 (2021).

    CAS  PubMed  Google Scholar 

  5. Furuzawa-Carballeda, J. et al. Achalasia — an autoimmune inflammatory disease: a cross-sectional study. J. Immunol. Res. 2015, 729217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. De Giorgio, R. et al. Esophageal and gastric nitric oxide synthesizing innervation in primary achalasia. Am. J. Gastroenterol. 94, 2357–2362 (1999).

    PubMed  Google Scholar 

  7. Kilic, A. et al. Variations in inflammation and nerve fiber loss reflect different subsets of achalasia patients. J. Surg. Res. 143, 177–182 (2007).

    PubMed  Google Scholar 

  8. Moses, P. L. et al. Antineuronal antibodies in idiopathic achalasia and gastro-oesophageal reflux disease. Gut 52, 629–636 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaber, C. E. et al. Autoimmune and viral risk factors are associated with achalasia: a case-control study. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.14312 (2021).

    Article  PubMed  Google Scholar 

  10. Naik, R. D. et al. Association of achalasia with active Varicella zoster virus infection of the esophagus. Gastroenterology 161, 719–721 e2 (2021).

    PubMed  Google Scholar 

  11. Facco, M. et al. T cells in the myenteric plexus of achalasia patients show a skewed TCR repertoire and react to HSV-1 antigens. Am. J. Gastroenterol. 103, 1598–1609 (2008).

    PubMed  Google Scholar 

  12. Sodikoff, J. B. et al. Histopathologic patterns among achalasia subtypes. Neurogastroenterol. Motil. 28, 139–145 (2016).

    CAS  PubMed  Google Scholar 

  13. Reddy, C. A. et al. Per-oral endoscopic myotomy biopsies of achalasia patients reveal Schwann cell depletion in the muscularis propria. Clin. Gastroenterol. Hepatol. 19, 1294–1295 (2021).

    PubMed  Google Scholar 

  14. Sato, H. et al. Epidemiological analysis of achalasia in Japan using a large-scale claims database. J. Gastroenterol. 54, 621–627 (2019).

    PubMed  Google Scholar 

  15. van Hoeij, F. B. et al. Incidence and costs of achalasia in The Netherlands. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13195 (2018).

    Article  PubMed  Google Scholar 

  16. Harvey, P. R. et al. Incidence, morbidity and mortality of patients with achalasia in England: findings from a study of nationwide hospital and primary care data. Gut 68, 790–795 (2019).

    PubMed  Google Scholar 

  17. Sadowski, D. C. et al. Achalasia: incidence, prevalence and survival. A population-based study. Neurogastroenterol. Motil. 22, e256–e261 (2010).

    CAS  PubMed  Google Scholar 

  18. Samo, S. et al. Incidence and prevalence of achalasia in central Chicago, 2004-2014, since the widespread use of high-resolution manometry. Clin. Gastroenterol. Hepatol. 15, 366–373 (2017).

    PubMed  Google Scholar 

  19. Duffield, J. A. et al. Incidence of achalasia in South Australia based on esophageal manometry findings. Clin. Gastroenterol. Hepatol. 15, 360–365 (2017).

    PubMed  Google Scholar 

  20. Gaber, C. E. et al. Epidemiologic and economic burden of achalasia in the United States. Clin. Gastroenterol. Hepatol. 20, 342–352.e5. (2021).

    PubMed  Google Scholar 

  21. Roman, S. et al. High-resolution manometry improves the diagnosis of esophageal motility disorders in patients with dysphagia: a randomized multicenter study. Am. J. Gastroenterol. 111, 372–80. (2016).

    PubMed  Google Scholar 

  22. Wadhwa, V. et al. Changing trends in age, gender, racial distribution and inpatient burden of achalasia. Gastroenterol. Res. 10, 70–77 (2017).

    Google Scholar 

  23. Gregersen, H. & Lo, K. M. Pathophysiology and treatment of achalasia in a muscle mechanical perspective. Ann. N. Y. Acad. Sci. 1434, 173–184 (2018).

    PubMed  Google Scholar 

  24. Behar, J. & Biancani, P. Pathogenesis of simultaneous esophageal contractions in patients with motility disorders. Gastroenterology 105, 111–118 (1993).

    CAS  PubMed  Google Scholar 

  25. Sifrim, D., Janssens, J. & Vantrappen, G. Failing deglutitive inhibition in primary esophageal motility disorders. Gastroenterology 106, 875–882 (1994).

    CAS  PubMed  Google Scholar 

  26. Fornari, F. et al. Multiple rapid swallowing: a complementary test during standard oesophageal manometry. Neurogastroenterol. Motil. 21, 718–e41 (2009).

    CAS  PubMed  Google Scholar 

  27. Savojardo, D. et al. Multiple rapid swallowing in idiopathic achalasia: evidence for patients’ heterogeneity. Neurogastroenterol. Motil. 19, 263–269 (2007).

    CAS  PubMed  Google Scholar 

  28. Kushnir, V., Sayuk, G. S. & Gyawali, C. P. Multiple rapid swallow responses segregate achalasia subtypes on high-resolution manometry. Neurogastroenterol. Motil. 24, 1069–e561 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Murray, J. A. et al. The effects of recombinant human hemoglobin on esophageal motor functions in humans. Gastroenterology 109, 1241–1248 (1995).

    CAS  PubMed  Google Scholar 

  30. Aggestrup, S. et al. Lack of vasoactive intestinal polypeptide nerves in esophageal achalasia. Gastroenterology 84, 924–927 (1983).

    CAS  PubMed  Google Scholar 

  31. Mearin, F. et al. Patients with achalasia lack nitric oxide synthase in the gastro-oesophageal junction. Eur. J. Clin. Invest. 23, 724–728 (1993).

    CAS  PubMed  Google Scholar 

  32. Yamato, S., Saha, J. K. & Goyal, R. K. Role of nitric oxide in lower esophageal sphincter relaxation to swallowing. Life Sci. 50, 1263–1272 (1992).

    CAS  PubMed  Google Scholar 

  33. Dodds, W. J. et al. Paradoxical lower esophageal sphincter contraction induced by cholecystokinin-octapeptide in patients with achalasia. Gastroenterology 80, 327–333 (1981).

    CAS  PubMed  Google Scholar 

  34. Cohen, S., Fisher, R. & Tuch, A. The site of denervation in achalasia. Gut 13, 556–558 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Booy, J. D. et al. The prevalence of autoimmune disease in patients with esophageal achalasia. Dis. Esophagus 25, 209–213 (2012).

    CAS  PubMed  Google Scholar 

  36. King, D. et al. Achalasia is associated with atopy in patients younger than 40 years of age. Am. J. Gastroenterol. 116, 416–419 (2021).

    PubMed  Google Scholar 

  37. Romero-Hernández, F. et al. Autoimmune comorbidity in achalasia patients. J. Gastroenterol. Hepatol. 33, 203–208 (2018).

    PubMed  Google Scholar 

  38. Sara, C. et al. Clinical correlation and disease phenotype in patients with esophageal achalasia and comorbid autoimmune diseases. Dis. Esophagus 34, doaa072 (2021).

    PubMed  Google Scholar 

  39. Becker, J. et al. Comprehensive epidemiological and genotype-phenotype analyses in a large European sample with idiopathic achalasia. Eur. J. Gastroenterol. Hepatol. 28, 689–695 (2016).

    PubMed  Google Scholar 

  40. Becker, J. et al. The HLA-DQβ1 insertion is a strong achalasia risk factor and displays a geospatial north-south gradient among Europeans. Eur. J. Hum. Genet. 24, 1228–1231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Furuzawa-Carballeda, J. et al. An original Eurasian haplotype, HLA-DRB1*14:54-DQB1*05:03, influences the susceptibility to idiopathic achalasia. PLoS ONE 13, e0201676 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Vackova, Z. et al. First genotype-phenotype study reveals HLA-DQβ1 insertion heterogeneity in high-resolution manometry achalasia subtypes. United European Gastroenterol. J. 7, 45–51 (2019).

    CAS  PubMed  Google Scholar 

  43. Goldblum, J. R., Rice, T. W. & Richter, J. E. Histopathologic features in esophagomyotomy specimens from patients with achalasia. Gastroenterology 111, 648–654 (1996).

    CAS  PubMed  Google Scholar 

  44. Villanacci, V. et al. An immunohistochemical study of the myenteric plexus in idiopathic achalasia. J. Clin. Gastroenterol. 44, 407–410 (2010).

    CAS  PubMed  Google Scholar 

  45. Clark, S. B. et al. The nature of the myenteric infiltrate in achalasia: an immunohistochemical analysis. Am. J. Surg. Pathol. 24, 1153–1158 (2000).

    CAS  PubMed  Google Scholar 

  46. Spechler, S. J., Konda, V. & Souza, R. Can eosinophilic esophagitis cause achalasia and other esophageal motility disorders? Am. J. Gastroenterol. 113, 1594–1599 (2018).

    PubMed  Google Scholar 

  47. Jin, H. et al. Activated eosinophils are present in esophageal muscle in patients with achalasia of the esophagus. Med. Sci. Monit. 24, 2377–2383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Visaggi, P. et al. Systematic review: esophageal motility patterns in patients with eosinophilic esophagitis. Dig. Liver Dis. https://doi.org/10.1016/j.dld.2022.01.003 (2022).

    Article  PubMed  Google Scholar 

  49. Nelson, M. et al. Lower esophageal sphincter muscle of patients with achalasia exhibits profound mast cell degranulation. Neurogastroenterol. Motil. 33, e14055 (2021).

    CAS  PubMed  Google Scholar 

  50. Zarate, N. et al. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol. Motil. 18, 556–568 (2006).

    CAS  PubMed  Google Scholar 

  51. Ruiz-de-Leon, A. et al. Myenteric antiplexus antibodies and class II HLA in achalasia. Dig. Dis. Sci. 47, 15–19 (2002).

    PubMed  Google Scholar 

  52. Storch, W. B. et al. Autoantibodies to Auerbach’s plexus in achalasia. Cell Mol. Biol. 41, 1033–1038 (1995).

    CAS  PubMed  Google Scholar 

  53. Verne, G. N., Sallustio, J. E. & Eaker, E. Y. Anti-myenteric neuronal antibodies in patients with achalasia. A prospective study. Dig. Dis. Sci. 42, 307–313 (1997).

    CAS  PubMed  Google Scholar 

  54. Robertson, C. S., Martin, B. A. & Atkinson, M. Varicella-zoster virus DNA in the oesophageal myenteric plexus in achalasia. Gut 34, 299–302 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Castagliuolo, I. et al. Esophageal achalasia: is the herpes simplex virus really innocent? J. Gastrointest. Surg. 8, 24–30 (2004).

    PubMed  Google Scholar 

  56. Birgisson, S. et al. Achalasia is not associated with measles or known herpes and human papilloma viruses. Dig. Dis. Sci. 42, 300–306 (1997).

    CAS  PubMed  Google Scholar 

  57. Boeckxstaens, G. E. Achalasia: virus-induced euthanasia of neurons? Am. J. Gastroenterol. 103, 1610–1612 (2008).

    PubMed  Google Scholar 

  58. Boeckxstaens, G. E., Zaninotto, G. & Richter, J. E. Achalasia. Lancet 383, 83–93 (2014).

    PubMed  Google Scholar 

  59. Wong, R. K. et al. Significant DQw1 association in achalasia. Dig. Dis. Sci. 34, 349–52. (1989).

    CAS  PubMed  Google Scholar 

  60. Kilpatrick, Z. M. & Milles, S. S. Achalasia in mother and daughter. Gastroenterology 62, 1042–1046 (1972).

    CAS  PubMed  Google Scholar 

  61. Monnig, P. J. Familial achalasia in children. Ann. Thorac. Surg. 49, 1019–1022 (1990).

    CAS  PubMed  Google Scholar 

  62. Brooks, B. P. et al. Genotypic heterogeneity and clinical phenotype in triple A syndrome: a review of the NIH experience 2000-2005. Clin. Genet. 68, 215–221 (2005).

    CAS  PubMed  Google Scholar 

  63. Koehler, K. et al. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am. J. Hum. Genet. 93, 727–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goldblum, J. R. et al. Achalasia. A morphologic study of 42 resected specimens. Am. J. Surg. Pathol. 18, 327–337 (1994).

    CAS  PubMed  Google Scholar 

  65. Faussone-Pellegrini, M. S. & Cortesini, C. The muscle coat of the lower esophageal sphincter in patients with achalasia and hypertensive sphincter. An electron microscopic study. J. Submicrosc. Cytol. 17, 673–685 (1985).

    CAS  PubMed  Google Scholar 

  66. Bonora, E. et al. INPP4B overexpression and c-KIT downregulation in human achalasia. Neurogastroenterol. Motil. 30, e13346 (2018).

    CAS  PubMed  Google Scholar 

  67. Tustumi, F. et al. Achalasia: a syndrome. Neurogastroenterol. Motil. 33, e14089 (2021).

    PubMed  Google Scholar 

  68. Kahrilas, P. J. & Boeckxstaens, G. The spectrum of achalasia: lessons from studies of pathophysiology and high-resolution manometry. Gastroenterology 145, 954–965 (2013).

    PubMed  Google Scholar 

  69. Mittal, R. K., Hong, S. J. & Bhargava, V. Longitudinal muscle dysfunction in achalasia esophagus and its relevance. J. Neurogastroenterol. Motil. 19, 126–136 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Kim, T. H. et al. Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic? Am. J. Physiol. Gastrointest. Liver Physiol. 310, G689–G695 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Bruley des Varannes, S. et al. Serum from achalasia patients alters neurochemical coding in the myenteric plexus and nitric oxide mediated motor response in normal human fundus. Gut 55, 319–326 (2006).

    CAS  PubMed  Google Scholar 

  72. Vaezi, M. F., Pandolfino, J. E. & Vela, M. F. ACG clinical guideline: diagnosis and management of achalasia. Am. J. Gastroenterol. 108, 1238–1249 (2013). quiz 1250.

    PubMed  Google Scholar 

  73. Koppman, J. S. et al. Esophageal motility disorders in the morbidly obese population. Surg. Endosc. 21, 761–764 (2007).

    CAS  PubMed  Google Scholar 

  74. Miller, J., Khlevner, J. & Rodriguez, L. Upper gastrointestinal functional and motility disorders in children. Pediatr. Clin. North. Am. 68, 1237–1253 (2021).

    PubMed  Google Scholar 

  75. Franklin, A. L., Petrosyan, M. & Kane, T. D. Childhood achalasia: a comprehensive review of disease, diagnosis and therapeutic management. World J. Gastrointest. Endosc. 6, 105–111 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Eckardt, V. F., Aignherr, C. & Bernhard, G. Predictors of outcome in patients with achalasia treated by pneumatic dilation. Gastroenterology 103, 1732–1738 (1992).

    CAS  PubMed  Google Scholar 

  77. Patel, D. A. et al. Patient-reported outcome measures in dysphagia: a systematic review of instrument development and validation. Dis. Esophagus 30, dow028 (2017).

    Google Scholar 

  78. Urbach, D. R. et al. A measure of disease-specific health-related quality of life for achalasia. Am. J. Gastroenterol. 100, 1668–1676 (2005).

    PubMed  Google Scholar 

  79. Tsuboi, K. et al. Insights gained from symptom evaluation of esophageal motility disorders: a review of 4,215 patients. Digestion 85, 236–242 (2012).

    PubMed  Google Scholar 

  80. Chan, W. W., Haroian, L. R. & Gyawali, C. P. Value of preoperative esophageal function studies before laparoscopic antireflux surgery. Surg. Endosc. 25, 2943–2949 (2011).

    PubMed  Google Scholar 

  81. Iwakiri, K. et al. The appearance of rosette-like esophageal folds (“esophageal rosette”) in the lower esophagus after a deep inspiration is a characteristic endoscopic finding of primary achalasia. J. Gastroenterol. 45, 422–425 (2010).

    PubMed  Google Scholar 

  82. Gomi, K. et al. New endoscopic classification of the cardiac orifice in esophageal achalasia: champagne glass sign. Dig. Endosc. 28, 645–649 (2016).

    PubMed  Google Scholar 

  83. Hoversten, P., Otaki, F. & Katzka, D. A. Course of esophageal candidiasis and outcomes of patients at a single center. Clin. Gastroenterol. Hepatol. 17, 200–202.e1 (2019).

    PubMed  Google Scholar 

  84. Carlson, D. A. et al. Diagnosis of esophageal motility disorders: esophageal pressure topography vs. conventional line tracing. Am. J. Gastroenterol. 110, 967–977 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Soudagar, A. S., Sayuk, G. S. & Gyawali, C. P. Learners favour high resolution oesophageal manometry with better diagnostic accuracy over conventional line tracings. Gut 61, 798–803 (2012).

    PubMed  Google Scholar 

  86. Rohof, W. O. et al. Outcomes of treatment for achalasia depend on manometric subtype. Gastroenterology 144, 718–725 (2013). quiz e13-14.

    PubMed  Google Scholar 

  87. Pandolfino, J. E. et al. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology 135, 1526–1533 (2008).

    PubMed  Google Scholar 

  88. Ghosh, S. K. et al. Impaired deglutitive EGJ relaxation in clinical esophageal manometry: a quantitative analysis of 400 patients and 75 controls. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G878–G885 (2007).

    CAS  PubMed  Google Scholar 

  89. Kahrilas, P. J. et al. The Chicago classification of esophageal motility disorders, v3.0. Neurogastroenterol. Motil. 27, 160–174 (2015).

    CAS  PubMed  Google Scholar 

  90. Ponds, F. A. et al. Esophagogastric junction distensibility identifies achalasia subgroup with manometrically normal esophagogastric junction relaxation. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.12908 (2017).

    Article  PubMed  Google Scholar 

  91. Khan, M. A. et al. Is POEM the answer for management of spastic esophageal disorders? A systematic review and meta-analysis. Dig. Dis. Sci. 62, 35–44 (2017).

    PubMed  Google Scholar 

  92. van Hoeij, F. B., Smout, A. J. & Bredenoord, A. J. Characterization of idiopathic esophagogastric junction outflow obstruction. Neurogastroenterol. Motil. 27, 1310–1316 (2015).

    PubMed  Google Scholar 

  93. Biasutto, D. et al. Rapid drink challenge test during esophageal high resolution manometry in patients with esophago-gastric junction outflow obstruction. Neurogastroenterol. Motil. 30, e13293 (2018).

    CAS  PubMed  Google Scholar 

  94. Babaei, A., Shad, S. & Massey, B. T. Motility patterns following esophageal pharmacologic provocation with amyl nitrite or cholecystokinin during high-resolution manometry distinguish idiopathic vs opioid-induced type 3 achalasia. Clin. Gastroenterol. Hepatol. 18, 813–821.e1 (2020).

    CAS  PubMed  Google Scholar 

  95. Babaei, A. et al. Pharmacologic interrogation of patients with esophagogastric junction outflow obstruction using amyl nitrite. Neurogastroenterol. Motil. 31, e13668 (2019).

    PubMed  PubMed Central  Google Scholar 

  96. Porter, R. F. & Gyawali, C. P. Botulinum toxin injection in dysphagia syndromes with preserved esophageal peristalsis and incomplete lower esophageal sphincter relaxation. Neurogastroenterol. Motil. 23, 139–144 (2011).

    CAS  PubMed  Google Scholar 

  97. Gyawali, C. P. et al. ACG clinical guidelines: clinical use of esophageal physiologic testing. Am. J. Gastroenterol. 115, 1412–1428 (2020).

    PubMed  Google Scholar 

  98. Blonski, W. et al. Timed barium swallow: diagnostic role and predictive value in untreated achalasia, esophagogastric junction outflow obstruction, and non-achalasia dysphagia. Am. J. Gastroenterol. 113, 196–203 (2018).

    PubMed  Google Scholar 

  99. Kostic, S. et al. Timed barium esophagogram in the assessment of patients with achalasia: reproducibility and observer variation. Dis. Esophagus 18, 96–103 (2005).

    CAS  PubMed  Google Scholar 

  100. Rohof, W. O., Lei, A. & Boeckxstaens, G. E. Esophageal stasis on a timed barium esophagogram predicts recurrent symptoms in patients with long-standing achalasia. Am. J. Gastroenterol. 108, 49–55 (2013).

    CAS  PubMed  Google Scholar 

  101. Savarino, E. et al. Use of the functional lumen imaging probe in clinical esophagology. Am. J. Gastroenterol. 115, 1786–1796 (2020).

    PubMed  Google Scholar 

  102. Carlson, D. A. et al. Evaluation of esophageal motility utilizing the functional lumen imaging probe. Am. J. Gastroenterol. 111, 1726–1735 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Carlson, D. A. et al. Loss of peristaltic reserve, determined by multiple rapid swallows, is the most frequent esophageal motility abnormality in patients with systemic sclerosis. Clin. Gastroenterol. Hepatol. 14, 1502–1506 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Carlson, D. A. et al. Prediction of esophageal retention: a study comparing high-resolution manometry and functional luminal imaging probe panometry. Am. J. Gastroenterol. 116, 2032–2041 (2021).

    PubMed  Google Scholar 

  105. Carlson, D. A. et al. The functional lumen imaging probe detects esophageal contractility not observed with manometry in patients with achalasia. Gastroenterology 149, 1742–1751 (2015).

    PubMed  Google Scholar 

  106. Carlson, D. A. et al. Classifying esophageal motility by FLIP Panometry: A Study of 722 subjects with manometry. Am. J. Gastroenterol. 116, 2357–2366 (2021).

    PubMed  Google Scholar 

  107. Ponds, F. A. et al. Diagnostic features of malignancy-associated pseudoachalasia. Aliment. Pharmacol. Ther. 45, 1449–1458 (2017).

    CAS  PubMed  Google Scholar 

  108. Lynch, K. L. et al. Clinical presentation and disease course of patients with esophagogastric junction outflow obstruction. Dis. Esophagus 30, dox004 (2017).

    Google Scholar 

  109. Lucchinetti, C. F., Kimmel, D. W. & Lennon, V. A. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 50, 652–657 (1998).

    CAS  PubMed  Google Scholar 

  110. Bredenoord, A. J. et al. Esophagogastric junction outflow obstruction. Neurogastroenterol. Motil. 33, e14193 (2021).

    PubMed  Google Scholar 

  111. de Oliveira, R. B. et al. The spectrum of esophageal motor disorders in Chagas’ disease. Am. J. Gastroenterol. 90, 1119–1124 (1995).

    PubMed  Google Scholar 

  112. Dantas, R. O. Management of esophageal dysphagia in Chagas disease. Dysphagia 36, 517–522 (2021).

    PubMed  Google Scholar 

  113. Ghisa, M. et al. Achalasia and obstructive motor disorders are not uncommon in patients with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 19, 1554–1563 (2021).

    CAS  PubMed  Google Scholar 

  114. Savarino, E. et al. Achalasia with dense eosinophilic infiltrate responds to steroid therapy. Clin. Gastroenterol. Hepatol. 9, 1104–1106 (2011).

    PubMed  Google Scholar 

  115. Ikeda, H. et al. Diagnosis of congenital esophageal stenosis in adults and treatment with peroral endoscopic myotomy. Ann. Gastroenterol. 34, 493–500 (2021).

    PubMed  PubMed Central  Google Scholar 

  116. Triadafilopoulos, G. et al. Changes in high-resolution manometric diagnosis over time: implications for clinical decision-making. Dis. Esophagus 33, doz094 (2020).

    PubMed  Google Scholar 

  117. Gelfond, M., Rozen, P. & Gilat, T. Isosorbide dinitrate and nifedipine treatment of achalasia: a clinical, manometric and radionuclide evaluation. Gastroenterology 83, 963–969 (1982).

    CAS  PubMed  Google Scholar 

  118. Bortolotti, M. & Labo, G. Clinical and manometric effects of nifedipine in patients with esophageal achalasia. Gastroenterology 80, 39–44 (1981).

    CAS  PubMed  Google Scholar 

  119. Bortolotti, M. et al. Effects of sildenafil on esophageal motility of patients with idiopathic achalasia. Gastroenterology 118, 253–257 (2000).

    CAS  PubMed  Google Scholar 

  120. Oude Nijhuis, R. A. B. et al. European guidelines on achalasia: United European Gastroenterology and European Society of Neurogastroenterology and Motility recommendations. United European Gastroenterol. J. 8, 13–33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vaezi, M. F. & Richter, J. E. Diagnosis and management of achalasia. American College of Gastroenterology Practice Parameter Committee. Am. J. Gastroenterol. 94, 3406–3412 (1999).

    CAS  PubMed  Google Scholar 

  122. Bassotti, G. & Annese, V. Review article: pharmacological options in achalasia. Aliment. Pharmacol. Ther. 13, 1391–1396 (1999).

    CAS  PubMed  Google Scholar 

  123. Weusten, B. et al. Endoscopic management of gastrointestinal motility disorders - part 1: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 52, 498–515 (2020).

    PubMed  Google Scholar 

  124. Weusten, B. et al. Endoscopic management of gastrointestinal motility disorders - part 2: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 52, 600–614 (2020).

    PubMed  Google Scholar 

  125. Khashab, M. A. et al. ASGE guideline on the management of achalasia. Gastrointest. Endosc. 91, 213–227.e6 (2020).

    PubMed  Google Scholar 

  126. Annese, V. et al. Controlled trial of botulinum toxin injection versus placebo and pneumatic dilation in achalasia. Gastroenterology 111, 1418–1424 (1996).

    CAS  PubMed  Google Scholar 

  127. van Hoeij, F. B. et al. Complications of botulinum toxin injections for treatment of esophageal motility disorders. Dis. Esophagus 30, dote12491 (2016).

    Google Scholar 

  128. van Hoeij, F. B. et al. Efficacy and safety of pneumatic dilation in achalasia: a systematic review and meta-analysis. Neurogastroenterol. Motil. 31, e13548 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Boeckxstaens, G. E. et al. Pneumatic dilation versus laparoscopic Heller’s myotomy for idiopathic achalasia. N. Engl. J. Med. 364, 1807–1816 (2011).

    CAS  PubMed  Google Scholar 

  130. Inoue, H. et al. Peroral endoscopic myotomy (POEM) for esophageal achalasia. Endoscopy 42, 265–271 (2010).

    CAS  PubMed  Google Scholar 

  131. Modayil, R. J. et al. Peroral endoscopic myotomy: 10-year outcomes from a large, single-center U.S. series with high follow-up completion and comprehensive analysis of long-term efficacy, safety, objective GERD, and endoscopic functional luminal assessment. Gastrointest. Endosc. 94, 930–942 (2021).

    PubMed  Google Scholar 

  132. Nabi, Z. et al. Comparison of short versus long esophageal myotomy in cases with idiopathic achalasia: a randomized controlled trial. J. Neurogastroenterol. Motil. 27, 63–70 (2021).

    PubMed  PubMed Central  Google Scholar 

  133. Delliturri, A. et al. A Narrative Review of update in per oral endoscopic myotomy (POEM) and endoscopic esophageal surgery. Ann. Transl. Med. 9, 909 (2021).

    PubMed  PubMed Central  Google Scholar 

  134. Inoue, H. et al. Per-oral endoscopic myotomy: a series of 500 patients. J. Am. Coll. Surg. 221, 256–264 (2015).

    PubMed  Google Scholar 

  135. Akintoye, E. et al. Peroral endoscopic myotomy: a meta-analysis. Endoscopy 48, 1059–1068 (2016).

    PubMed  Google Scholar 

  136. Onimaru, M. et al. Long-term clinical results of per-oral endoscopic myotomy (POEM) for achalasia: first report of more than 10-year patient experience as assessed with a questionnaire-based survey. Endosc. Int. Open 9, E409–E416 (2021).

    PubMed  PubMed Central  Google Scholar 

  137. Repici, A. et al. GERD after per-oral endoscopic myotomy as compared with Heller’s myotomy with fundoplication: a systematic review with meta-analysis. Gastrointest. Endosc. 87, 934–943.e18 (2018).

    PubMed  Google Scholar 

  138. Karyampudi, A. et al. Gastroesophageal reflux after per-oral endoscopic myotomy is frequently asymptomatic, but leads to more severe esophagitis: a case-control study. United European Gastroenterol. J. 9, 63–71 (2021).

    PubMed  PubMed Central  Google Scholar 

  139. Patti, M. G., Tamburini, A. & Pellegrini, C. A. Cardiomyotomy. Semin. Laparosc. Surg. 6, 186–193 (1999).

    CAS  PubMed  Google Scholar 

  140. Milone, M. et al. Robotic versus laparoscopic approach to treat symptomatic achalasia: systematic review with meta-analysis. Dis. Esophagus 32, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  141. Richards, W. O. et al. Heller myotomy versus Heller myotomy with Dor fundoplication for achalasia: a prospective randomized double-blind clinical trial. Ann. Surg. 240, 405–412; discussion 412–415 (2004).

    PubMed  PubMed Central  Google Scholar 

  142. Torres-Villalobos, G. et al. Dor vs Toupet fundoplication after laparoscopic Heller myotomy: long-term randomized controlled trial evaluated by high-resolution manometry. J. Gastrointest. Surg. 22, 13–22 (2018).

    PubMed  Google Scholar 

  143. Ortiz, A. et al. Very long-term objective evaluation of Heller myotomy plus posterior partial fundoplication in patients with achalasia of the cardia. Ann. Surg. 247, 258–264 (2008).

    PubMed  Google Scholar 

  144. Zaninotto, G. et al. Four hundred laparoscopic myotomies for esophageal achalasia: a single centre experience. Ann. Surg. 248, 986–993 (2008).

    PubMed  Google Scholar 

  145. Gossage, J. A. et al. Surveillance endoscopy at five or more years after cardiomyotomy for achalasia. Ann. Surg. 259, 464–468 (2014).

    PubMed  Google Scholar 

  146. Chrystoja, C. C. et al. Achalasia-specific quality of life after pneumatic dilation or laparoscopic Heller myotomy with partial fundoplication: a multicenter, randomized clinical trial. Am. J. Gastroenterol. 111, 1536–1545 (2016).

    PubMed  Google Scholar 

  147. Ponds, F. A. et al. Effect of peroral endoscopic myotomy vs pneumatic dilation on symptom severity and treatment outcomes among treatment-naive patients with achalasia: a randomized clinical trial. JAMA 322, 134–144 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Sloan, J. A. et al. Treatment experience with a novel 30-mm hydrostatic balloon in esophageal dysmotility: a multicenter retrospective analysis. Gastrointest. Endosc. 92, 1251–1257 (2020).

    PubMed  Google Scholar 

  149. Schnurre, L. et al. Short-term outcome after singular hydraulic EsoFLIP dilation in patients with achalasia: a feasibility study. Neurogastroenterol. Motil. 32, e13864 (2020).

    PubMed  Google Scholar 

  150. Jung, H. K. et al. 2019 Seoul consensus on esophageal achalasia guidelines. J. Neurogastroenterol. Motil. 26, 180–203 (2020).

    PubMed  PubMed Central  Google Scholar 

  151. Werner, Y. B. et al. Endoscopic or surgical myotomy in patients with idiopathic achalasia. N. Engl. J. Med. 381, 2219–2229 (2019).

    PubMed  Google Scholar 

  152. Pratap, N. et al. Achalasia cardia subtyping by high-resolution manometry predicts the therapeutic outcome of pneumatic balloon dilatation. J. Neurogastroenterol. Motil. 17, 48–53 (2011).

    PubMed  PubMed Central  Google Scholar 

  153. Salvador, R. et al. Effects of laparoscopic myotomy on the esophageal motility pattern of esophageal achalasia as measured by high-resolution manometry. Surg. Endosc. 31, 3510–3518 (2017).

    PubMed  Google Scholar 

  154. Kumbhari, V. et al. Peroral endoscopic myotomy (POEM) vs laparoscopic Heller myotomy (LHM) for the treatment of type III achalasia in 75 patients: a multicenter comparative study. Endosc. Int. Open 3, E195–E201 (2015).

    PubMed  PubMed Central  Google Scholar 

  155. Borges, A. A. et al. Pneumatic dilation versus laparoscopic Heller myotomy for the treatment of achalasia: variables related to a good response. Dis. Esophagus 27, 18–23 (2014).

    CAS  PubMed  Google Scholar 

  156. Fernandez-Ananin, S. et al. What to do when Heller’s myotomy fails? Pneumatic dilatation, laparoscopic remyotomy or peroral endoscopic myotomy: a systematic review. J. Minim. Access. Surg. 14, 177–184 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. van Hoeij, F. B. et al. Management of recurrent symptoms after per-oral endoscopic myotomy in achalasia. Gastrointest. Endosc. 87, 95–101 (2018).

    PubMed  Google Scholar 

  158. Giulini, L., Dubecz, A. & Stein, H. J. Laparoscopic Heller myotomy after failed POEM and multiple balloon dilatations: better late than never [German]. Chirurg 88, 303–306 (2017).

    CAS  PubMed  Google Scholar 

  159. Panchanatheeswaran, K. et al. Laparoscopic Heller’s cardiomyotomy: a viable treatment option for sigmoid oesophagus. Interact. Cardiovasc. Thorac. Surg. 16, 49–54 (2013).

    PubMed  Google Scholar 

  160. Tyberg, A. et al. Peroral endoscopic myotomy as salvation technique post-Heller: international experience. Dig. Endosc. 30, 52–56 (2018).

    PubMed  Google Scholar 

  161. Tang, X. et al. Feasibility and safety of peroral endoscopic myotomy for achalasia after failed endoscopic interventions. Dis. Esophagus 30, dote.12457 (2017).

    Google Scholar 

  162. Ling, T., Guo, H. & Zou, X. Effect of peroral endoscopic myotomy in achalasia patients with failure of prior pneumatic dilation: a prospective case-control study. J. Gastroenterol. Hepatol. 29, 1609–1613 (2014).

    PubMed  Google Scholar 

  163. Aiolfi, A. et al. Esophageal resection for end-stage achalasia. Am. Surg. 84, 506–511 (2018).

    PubMed  Google Scholar 

  164. Molena, D. & Yang, S. C. Surgical management of end-stage achalasia. Semin. Thorac. Cardiovasc. Surg. 24, 19–26 (2012).

    PubMed  Google Scholar 

  165. Eckardt, V. F., Hoischen, T. & Bernhard, G. Life expectancy, complications, and causes of death in patients with achalasia: results of a 33-year follow-up investigation. Eur. J. Gastroenterol. Hepatol. 20, 956–960 (2008).

    PubMed  Google Scholar 

  166. Zaninotto, G. et al. The 2018 ISDE achalasia guidelines. Dis. Esophagus https://doi.org/10.1093/dote/doy071 (2018).

    Article  PubMed  Google Scholar 

  167. Palanivelu, C. et al. Laparoscopic transhiatal esophagectomy for ‘sigmoid’ megaesophagus following failed cardiomyotomy: experience of 11 patients. Dig. Dis. Sci. 53, 1513–1518 (2008).

    PubMed  Google Scholar 

  168. Glatz, S. M. & Richardson, J. D. Esophagectomy for end stage achalasia. J. Gastrointest. Surg. 11, 1134–1137 (2007).

    PubMed  Google Scholar 

  169. Eckardt, V. F. Clinical presentations and complications of achalasia. Gastrointest. Endosc. Clin. N. Am. 11, 281–292 (2001).

    CAS  PubMed  Google Scholar 

  170. Taft, T. H. et al. Evaluating the reliability and construct validity of the Eckardt symptom score as a measure of achalasia severity. Neurogastroenterol. Motil. 30, e13287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Cisternas, D. et al. Fair reliability of eckardt scores in achalasia and non-achalasia patients: psychometric properties of the eckardt spanish version in a multicentric study. Neurogastroenterol. Motil. 32, e13827 (2020).

    PubMed  Google Scholar 

  172. Vantrappen, G. & Hellemans, J. Treatment of achalasia and related motor disorders. Gastroenterology 79, 144–154 (1980).

    CAS  PubMed  Google Scholar 

  173. Dakkak, M. & Bennett, J. R. A new dysphagia score with objective validation. J. Clin. Gastroenterol. 14, 99–100 (1992).

    CAS  PubMed  Google Scholar 

  174. Taft, T. H. et al. Development and validation of the brief esophageal dysphagia questionnaire. Neurogastroenterol. Motil. 28, 1854–1860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Cisternas, D. et al. The Brief Esophageal Dysphagia Questionnaire shows better discriminative capacity for clinical and manometric findings than the Eckardt score: results from a multicenter study. Neurogastroenterol. Motil. 34, e14228 (2021).

    PubMed  Google Scholar 

  176. Goldacre, M., Benians, R. & Goldacre, R. Esophageal achalasia diagnosed in people previously diagnosed with an eating disorder: epidemiological study using record-linkage. Int. J. Eat. Disord. 54, 2015–2018 (2021).

    PubMed  Google Scholar 

  177. Carlson, D. A. et al. Esophageal hypervigilance and visceral anxiety are contributors to symptom severity among patients evaluated with high-resolution esophageal manometry. Am. J. Gastroenterol. 115, 367–375 (2020).

    PubMed  PubMed Central  Google Scholar 

  178. Loosen, S. H. et al. Achalasia is associated with a higher incidence of depression in outpatients in Germany. PLoS ONE 16, e0250503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ross, D., Richter, J. & Velanovich, V. Health-related quality of life and physiological measurements in achalasia. Dis. Esophagus 30, dote.12494 (2017).

    Google Scholar 

  180. Zhong, C. et al. Quality of life following peroral endoscopic myotomy for esophageal achalasia: a systematic review and meta-analysis. Ann. Thorac. Cardiovasc. Surg. 26, 113–124 (2020).

    PubMed  PubMed Central  Google Scholar 

  181. Slone, S. et al. Accuracy of achalasia quality of life and eckardt scores for assessment of clinical improvement post treatment for achalasia. Dis. Esophagus 34, doaa080 (2021).

    PubMed  Google Scholar 

  182. Smits, M. et al. Pediatric achalasia in the Netherlands: incidence, clinical course, and quality of life. J. Pediatr. 169, 110–5.e3 (2016).

    PubMed  Google Scholar 

  183. Newberry, C. et al. Achalasia patients are at nutritional risk regardless of presenting weight category. Dig. Dis. Sci. 63, 1243–1249 (2018).

    PubMed  Google Scholar 

  184. Chino, O. et al. Clinicopathological studies of esophageal carcinoma in achalasia: analyses of carcinogenesis using histological and immunohistochemical procedures. Anticancer. Res. 20, 3717–3722 (2000).

    CAS  PubMed  Google Scholar 

  185. Leeuwenburgh, I. et al. Long-term esophageal cancer risk in patients with primary achalasia: a prospective study. Am. J. Gastroenterol. 105, 2144–2149 (2010).

    CAS  PubMed  Google Scholar 

  186. Tustumi, F. et al. Esophageal achalasia: a risk factor for carcinoma. A systematic review and meta-analysis. Dis. Esophagus 30, dox072 (2017).

    Google Scholar 

  187. Sandler, R. S. et al. The risk of esophageal cancer in patients with achalasia. A population-based study. JAMA 274, 1359–1362 (1995).

    CAS  PubMed  Google Scholar 

  188. Zagari, R. M. et al. Risk of squamous cell carcinoma and adenocarcinoma of the esophagus in patients with achalasia: a long-term prospective cohort study in Italy. Am. J. Gastroenterol. 116, 289–295 (2021).

    PubMed  Google Scholar 

  189. Markar, S. R. et al. Incidence and risk factors for esophageal cancer following achalasia treatment: national population-based case-control study. Dis. Esophagus 32, doy106 (2019).

    PubMed  Google Scholar 

  190. Tassi, V. et al. Incidence and risk factors for the development of epidermoid carcinoma in oesophageal achalasia. Eur. J. Cardiothorac. Surg. 55, 956–963 (2019).

    PubMed  Google Scholar 

  191. Wu, X. Y. et al. The etiology of achalasia: an immune-dominant disease. J. Dig. Dis. 22, 126–135 (2021).

    CAS  PubMed  Google Scholar 

  192. El Kafsi, J. et al. Management of achalasia in the UK, do we need new guidelines? Ann. Med. Surg. 12, 32–36 (2016).

    Google Scholar 

  193. Werner, Y. B. et al. Clinical response to peroral endoscopic myotomy in patients with idiopathic achalasia at a minimum follow-up of 2 years. Gut 65, 899–906 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous patient for their contribution in Box 2.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.S., C.P.G. and S.B.); Epidemiology (S.R.); Mechanisms/pathophysiology (D.S.); Diagnosis/screening/prevention (C.P.G.); Management (E.S. and S.K.T.); Quality of life (S.R.); Outlook (J.T.); Overview of the Primer (E.S.).

Corresponding author

Correspondence to Edoardo Savarino.

Ethics declarations

Competing interests

E.S. has served as speaker for AbbVie, AGPharma, Alfasigma, EG Stada Group, Fresenius Kabi, Grifols, Janssen, Innovamedica, Malesci, Medtronic, Novartis, Pfizer, Reckitt Benckiser, Sandoz, SILA, Sofar, Takeda and Unifarco; has served as consultant for Alfasigma, Amgen, Biogen, Bristol-Myers Squibb, Celltrion, Diadema Farmaceutici, Falk, Fresenius Kabi, Janssen, Merck & Co., Reckitt Benckiser, Regeneron, Sanofi, Shire, SILA, Sofar, Synformulas GmbH, Takeda and Unifarco; and has received research support from Reckitt Benckiser, SILA, Sofar and Unifarco. S.B. has served as speaker for Medtronic. S.R. has served as consultant for Reckitt Benckiser and Dr Falk Pharma; and has received research support from Medtronic and Diversatek Healthcare. D.S. has served as consultant for Reckitt Benckiser UK, Jinshan Technology China and Alfasigma Italy. J.T. has served on the speaker bureau for Abbott, Mylan and Takeda; has served as consultant for Arena, Bayer, Falk, Takeda and Truvion pharmaceuticals; and has received research support from Shire, Sofar and Takeda. S.K.T. has served as a consultant for Medtronic. C.P.G. has served as speaker for Medtronic, Takeda and Johnson&Johnson, and has served as consultant for Medtronic, Diversatek, Takeda and Ironwood.

Peer review

Peer review information

Nature Reviews Disease Primers thanks I. Gockel; Z. Nabi; M. Patti; Y. Shimamura, who co-reviewed with Y. Fujiyoshi; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savarino, E., Bhatia, S., Roman, S. et al. Achalasia. Nat Rev Dis Primers 8, 28 (2022). https://doi.org/10.1038/s41572-022-00356-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00356-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing