Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiotherapy toxicity

An Author Correction to this article was published on 04 March 2019

This article has been updated

Abstract

Radiotherapy is used in >50% of patients with cancer, both for curative and palliative purposes. Radiotherapy uses ionizing radiation to target and kill tumour tissue, but normal tissue can also be damaged, leading to toxicity. Modern and precise radiotherapy techniques, such as intensity-modulated radiotherapy, may prevent toxicity, but some patients still experience adverse effects. The physiopathology of toxicity is dependent on many parameters, such as the location of irradiation or the functional status of organs at risk. Knowledge of the mechanisms leads to a more rational approach for controlling radiotherapy toxicity, which may result in improved symptom control and quality of life for patients. This improved quality of life is particularly important in paediatric patients, who may live for many years with the long-term effects of radiotherapy. Notably, signs and symptoms occurring after radiotherapy may not be due to the treatment but to an exacerbation of existing conditions or to the development of new diseases. Although differential diagnosis may be difficult, it has important consequences for patients.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: General cellular and tissue responses over time following treatment with radiotherapy.
Fig. 2: MRI for differential diagnosis of radiotherapy toxicity in the brain.
Fig. 3: CT of the chest after concurrent chemotherapy and radiotherapy.
Fig. 4: Symptomatic management of radiotherapy toxicity.

Change history

  • 04 March 2019

    In the version originally published, an incorrect version of Figure 1 was used. This has now been replaced.

References

  1. Citrin, D. E. Recent developments in radiotherapy. N. Engl. J. Med. 377, 1065–1075 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424 (2018).

    Google Scholar 

  3. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  4. Bray, F. et al. CI5 XI. Cancer incidence in five continents volume XI [electronic version]. WHO IARC http://ci5.iarc.fr/CI5-XI (2017).

  5. Yap, M. L. et al. Global access to radiotherapy services: have we made progress during the past decade? J. Glob. Oncol. 2, 207–215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Howlader, N. et al. SEER cancer statistics review, 1975–2010. NIH NCI http://seer.cancer.gov/csr/1975_2010/ (2013).

  7. Robison, L. L. et al. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat. Rev. Cancer. 14, 61–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong, G. T. et al. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the childhood cancer survivor study. J. Clin. Oncol. 29, 3056–3064 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998 (2013). This hallmark study shows the relationship between the radiation dose to the heart and mortality in patients with breast cancer.

    Article  CAS  PubMed  Google Scholar 

  10. Roychoudhuri, R. et al. Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer 7, 9 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee, A. W. et al. A multicenter, phase 3, randomized trial of concurrent chemoradiotherapy plus adjuvant chemotherapy versus radiotherapy alone in patients with regionally advanced nasopharyngeal carcinoma: 10-year outcomes for efficacy and toxicity. Cancer 123, 4147–4157 (2017). This phase III trial shows the effect of chemotherapy on the outcomes of patients with nasopharyngeal cancer.

    Article  CAS  PubMed  Google Scholar 

  12. van Leeuwen, F. E. & Ng, A. K. Long-term risk of second malignancy and cardiovascular disease after Hodgkin lymphoma treatment. Hematology Am. Soc. Hematol. Educ. Program 2016, 323–330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stuschke, M. & Pottgen, C. Altered fractionation schemes in radiotherapy. Front. Radiat. Ther. Oncol. 42, 150–156 (2010).

    Article  PubMed  Google Scholar 

  14. Mahamud, O., So, J., Chua, M. L. K. & Bristow, R. G. Targeting DNA repair for precision radiotherapy: balancing the therapeutic ratio. Curr. Probl. Cancer 41, 265–272 (2017).

    Article  PubMed  Google Scholar 

  15. Morgan, M. A. & Lawrence, T. S. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin. Cancer Res. 21, 2898–2904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldstein, M. & Kastan, M. B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66, 129–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Pollard, J. M. & Gatti, R. A. Clinical radiation sensitivity with DNA repair disorders: an overview. Int. J. Radiat. Oncol. Biol. Phys. 74, 1323–1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nahas, S. A. & Gatti, R. A. DNA double strand break repair defects, primary immunodeficiency disorders, and ‘radiosensitivity’. Curr. Opin. Allergy Clin. Immunol. 9, 510–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Andreassen, C. N., Schack, L. M., Laursen, L. V. & Alsner, J. Radiogenomics — current status, challenges and future directions. Cancer Lett. 382, 127–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Foray, N., Bourguignon, M. & Hamada, N. Individual response to ionizing radiation. Mutat. Res. 770, 369–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Borgmann, K. et al. in Recent Results in Cancer Research Vol. 198 (eds Baumann, M., Krause, M., Cordes, N.) 1–24 (Springer, 2016).

  22. Wu, Q. et al. Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front. Immunol. 8, 613 (2017). This study shows that immunogenic cell death activates T cell immunity, and activation of the innate immunity is essential to obtain an optimal immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Gudkov, A. V. & Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nat. Rev. Cancer 3, 117–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Firat, E., Tsurumi, C., Gaedicke, S., Huai, J. & Niedermann, G. Tripeptidyl peptidase II plays a role in the radiation response of selected primary cell types but not based on nuclear translocation and p53 stabilization. Cancer Res. 69, 3325–3331 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, H. et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood 115, 3472–3480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, C. L., Blum, J. M. & Kirsch, D. G. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res. 2, 412–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Venkatesulu, B. P. et al. Radiation-induced endothelial vascular injury: a review of possible mechanisms. JACC Basic Transl Sci. 3, 563–572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bodo, S. et al. Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. J. Clin. Invest. https://doi.org/10.1172/JCI97631 (2018).

    Article  Google Scholar 

  31. Moding, E. J. et al. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci. Transl Med. 7, 278ra234 (2015).

    Article  CAS  Google Scholar 

  32. Qiu, W. et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2, 576–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kirsch, D. G. et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327, 593–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Kirsch, D. G. Using genetically engineered mice for radiation research. Radiat. Res. 176, 275–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clevers, H. Searching for adult stem cells in the intestine. EMBO Mol. Med. 1, 255–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Potten, C. S., Gandara, R., Mahida, Y. R., Loeffler, M. & Wright, N. A. The stem cells of small intestinal crypts: where are they? Cell Prolif. 42, 731–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, C. K., Yang, V. W. & Bialkowska, A. B. The role of intestinal stem cells in epithelial regeneration following radiation-induced gut injury. Curr. Stem Cell Rep. 3, 320–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komarova, E. A. et al. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23, 3265–3271 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hua, G. et al. Distinct levels of radioresistance in Lgr5(+) colonic epithelial stem cells versus Lgr5(+) small intestinal stem cells. Cancer Res. 77, 2124–2133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilke, C., Grosshans, D., Duman, J., Brown, P. & Li, J. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol. 20, 597–607 (2018).

    Article  PubMed  Google Scholar 

  42. Emmerson, E. et al. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol. Med. 10, e8051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nehs, M. A. et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150, 1032–1039 (2011).

    Article  PubMed  Google Scholar 

  44. Castle, K. D. et al. Mice lacking RIP3 kinase are not protected from acute radiation syndrome. Radiat. Res. 189, 627–633 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stoecklein, V. M. et al. Radiation exposure induces inflammasome pathway activation in immune cells. J. Immunol. 194, 1178–1189 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Pitt, J. M., Kroemer, G. & Zitvogel, L. Immunogenic and non-immunogenic cell death in the tumor microenvironment. Adv. Exp. Med. Biol. 1036, 65–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Formenti, S. C. & Demaria, S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J. Natl Cancer Inst. 105, 256–265 (2013). This article provides insights into the mechanisms of immune activation by radiotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ventura, J. et al. Localized synchrotron irradiation of mouse skin induces persistent systemic genotoxic and immune responses. Cancer Res. 77, 6389–6399 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, Y. et al. Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature 547, 458–462 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moding, E. J., Kastan, M. B. & Kirsch, D. G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 12, 526–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wirsdorfer, F. & Jendrossek, V. Modeling DNA damage-induced pneumopathy in mice: insight from danger signaling cascades. Radiat. Oncol. 12, 142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bickelhaupt, S. et al. Effects of CTGF blockade on attenuation and reversal of radiation-induced pulmonary fibrosis. J. Natl Cancer Inst. 109, 8 (2017).

    Article  CAS  Google Scholar 

  56. Abdollahi, A. et al. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J. Exp. Med. 201, 925–935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Khanna, A. DNA damage in cancer therapeutics: a boon or a curse? Cancer Res. 75, 2133–2138 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Hymes, S. R., Strom, E. A. & Fife, C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment. J. Am. Acad. Dermatol. 54, 28–46 (2006).

    Article  PubMed  Google Scholar 

  60. Molls, M., Herrmann, Th., Steinberg, F., & Feldmann, H. J. in Recent Results in Cancer Research Vol. 130 (eds Hinkelbein, W., Bruggmoser, G., Frommhold, H.) 109–121 (Springer, 1993).

  61. Trott, K. R., Herrmann, T. & Kasper, M. Target cells in radiation pneumopathy. Int. J. Radiat. Oncol. Biol. Phys. 58, 463–469 (2004).

    Article  PubMed  Google Scholar 

  62. Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rübe, C. E. et al. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther. Onkol. 180, 442–448 (2004).

    Article  PubMed  Google Scholar 

  64. Ozturk, B., Egehan, I., Atavci, S. & Kitapci, M. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 58, 213–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Stone, H. B., Peters, L. J. & Milas, L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J. Natl Cancer Inst. 63, 1229–1235 (1979). This paper presents the first preclinical study showing the effect of immunity on the effects of radiotherapy on tumours.

    CAS  PubMed  Google Scholar 

  66. Van Limbergen, E. J. et al. Combining radiotherapy with immunotherapy: the past, the present and the future. Br. J. Radiol. 90, 20170157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Basler, L., Andratschke, N., Ehrbar, S., Guckenberger, M. & Tanadini-Lang, S. Modelling the immunosuppressive effect of liver SBRT by simulating the dose to circulating lymphocytes: an in-silico planning study. Radiat. Oncol. 13, 10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuo, P. et al. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin. Cancer Res. 20, 5558–5569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takeshima, T. et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 70, 2697–2706 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, X. & Niedermann, G. Abscopal effects with hypofractionated schedules extending into the effector phase of the tumor-specific T-cell response. Int. J. Radiat. Oncol. Biol. Phys. 101, 63–73 (2018).

    Article  PubMed  Google Scholar 

  72. Marciscano, A. E. et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin. Cancer Res. 24, 5058–5071 (2018).

    CAS  PubMed  Google Scholar 

  73. Filatenkov, A. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer Res. 21, 3727–3739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morisada, M. et al. PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncoimmunology 7, e1395996 (2018).

    Article  PubMed  Google Scholar 

  75. Schrek, R. & Stefani, S. Radioresistance of phytohemagglutinin-treated normal and leukemic lymphocytes. J. Natl Cancer Inst. 32, 507–521 (1964).

    CAS  PubMed  Google Scholar 

  76. Shaverdian, N. et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18, 895–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Finn, O. J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18, 183–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Myers, C. J. & Lu, B. Decreased survival after combining thoracic irradiation and an anti-PD-1 antibody correlated with increased T cell infiltration into cardiac and lung tissues. Int. J. Radiat. Oncol. Biol. Phys. 99, 1129–1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017). This article shows the relationship between the dose per fraction of radiation, the effect on the immune system and the mechanisms for resistance.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fischer, J. C. et al. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Sci. Transl Med. 9, 2513 (2017).

    Article  Google Scholar 

  82. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bijl, H. P. et al. Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int. J. Radiat. Oncol. Biol. Phys. 57, 274–281 (2003).

    Article  PubMed  Google Scholar 

  84. Defraene, G., van Elmpt, W., Crijns, W., Slagmolen, P. & De Ruysscher, D. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother. Oncol. 117, 29–35 (2015).

    Article  PubMed  Google Scholar 

  85. Hartgerink, D. et al. Stereotactic radiosurgery in the management of patients with brain metastases of non-small cell lung cancer: indications, decision tools and future directions. Front. Oncol. 8, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ellingson, B. M., Chung, C., Pope, W. B., Boxerman, J. L. & Kaufmann, T. J. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J. Neurooncol. 134, 495–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Hassanzadeh, C. et al. Multiparametric MRI and [18F]fluorodeoxyglucose positron emission tomography imaging is a potential prognostic imaging biomarker in recurrent glioblastoma. Front. Oncol. 7, 178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brown, P. D. et al. Effect of radiosurgery alone versus radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316, 401–409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wefel, J. S., Parsons, M. W., Gondi, V. & Brown, P. D. Neurocognitive aspects of brain metastasis. Handb. Clin. Neurol. 149, 155–165 (2018).

    Article  PubMed  Google Scholar 

  90. Moore, D. M., D’Mello, A. M., McGrath, L. M. & Stoodley, C. J. The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Dev. Cogn. Neurosci. 24, 1–11 (2017).

    Article  PubMed  Google Scholar 

  91. Péchoux, C. L. et al. Prophylactic cranial irradiation for patients with lung cancer. Lancet Oncol. 17, e277–e293 (2016).

    Article  PubMed  Google Scholar 

  92. De Ruysscher, D. et al. Quantification of radiation-induced lung damage with CT scans: the possible benefit for radiogenomics. Acta Oncol. 52, 1405–1410 (2013).

    Article  PubMed  Google Scholar 

  93. De Ruysscher, D. et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother. Oncol. 124, 1–10 (2017).

    Article  PubMed  Google Scholar 

  94. Defraene, G., van Elmpt, W., Crijns, W. & De Ruysscher, D. Regional variability in radiation-induced lung damage can be predicted by baseline CT numbers. Radiother. Oncol. 122, 300–306 (2017).

    Article  PubMed  Google Scholar 

  95. Yirmibesoglu, E. et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 76, 350–353 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Billiet, C. et al. Outcome after PORT in ypN2 or R1/R2 versus no PORT in ypN0 stage III-N2 NSCLC after induction chemotherapy and resection. J. Thorac. Oncol. 11, 1940–1953 (2016).

    Article  PubMed  Google Scholar 

  97. Addley, H. C., Vargas, H. A., Moyle, P. L., Crawford, R. & Sala, E. Pelvic imaging following chemotherapy and radiation therapy for gynecologic malignancies. Radiographics 30, 1843–1856 (2010).

    Article  PubMed  Google Scholar 

  98. Diao, K. et al. Radiation toxicity in patients with collagen vascular disease and intrathoracic malignancy treated with modern radiation techniques. Radiother. Oncol. 125, 301–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. De Ruysscher, D. et al. Nintedanib reduces radiation-induced microscopic lung fibrosis but this cannot be monitored by CT imaging: a preclinical study with a high precision image-guided irradiator. Radiother. Oncol. 124, 482–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. van Wijk, Y. et al. Development of a virtual spacer to support the decision for the placement of an implantable rectum spacer for prostate cancer radiotherapy: comparison of dose, toxicity and cost-effectiveness. Radiother. Oncol. 125, 107–112 (2017).

    Article  PubMed  Google Scholar 

  101. Barnett, G. C. et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer 9, 134–142 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beech, N., Robinson, S., Porceddu, S. & Batstone, M. Dental management of patients irradiated for head and neck cancer. Aust. Dent. J. 59, 20–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. van Nimwegen, F. A. et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood 129, 2257–2265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, K. et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J. Clin. Oncol. 35, 1387–1394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kyriakakis, N. et al. Pituitary dysfunction following cranial radiotherapy for adult-onset nonpituitary brain tumours. Clin. Endocrinol. 84, 372–379 (2016).

    Article  CAS  Google Scholar 

  106. Andreyev, J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 8, 1007–1017 (2007).

    Article  PubMed  Google Scholar 

  107. Sharma, R. A. et al. Clinical development of new drug-radiotherapy combinations. Nat. Rev. Clin. Oncol. 13, 627–642 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Bennett, M. H., Feldmeier, J., Hampson, N. B., Smee, R. & Milross, C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst. Rev. 4, CD005005 (2016).

    PubMed  Google Scholar 

  109. Bolderston, A., Lloyd, N. S., Wong, R. K., Holden, L. & Robb-Blenderman, L. The prevention and management of acute skin reactions related to radiation therapy: a systematic review and practice guideline. Support. Care Cancer 14, 802–817 (2006).

    Article  PubMed  Google Scholar 

  110. Schmuth, M. et al. Topical corticosteroid therapy for acute radiation dermatitis: a prospective, randomized, double-blind study. Br. J. Dermatol. 146, 983–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Blijlevens, N. M., Donnelly, J. P. & De Pauw, B. E. Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplant. 25, 1269–1278 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Blanchard, D. et al. Management of somatic pain induced by head and neck cancer treatment: pain following radiation therapy and chemotherapy. Guidelines of the French Otorhinolaryngology Head and Neck Surgery Society (SFORL). Eur. Ann. Otorhinolaryngol. Head Neck Dis. 131, 253–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Epstein, J. B. et al. Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: results from a multicenter, randomized, double-blind, placebo-controlled clinical trial. Cancer 92, 875–885 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Sheibani, K. M. et al. Efficacy of benzydamine oral rinse in prevention and management of radiation-induced oral mucositis: a double-blind placebo-controlled randomized clinical trial. Asia Pac. J. Clin. Oncol. 11, 22–27 (2015).

    Article  PubMed  Google Scholar 

  115. Kazemian, A., Kamian, S., Aghili, M., Hashemi, F. A. & Haddad, P. Benzydamine for prophylaxis of radiation-induced oral mucositis in head and neck cancers: a double-blind placebo-controlled randomized clinical trial. Eur. J. Cancer Care 18, 174–178 (2009).

    Article  CAS  Google Scholar 

  116. Miller, R. et al. A phase III, Randomized double-blind study of doxepin rinse versus magic mouthwash versus placebo in the treatment of acute oral mucositis pain in patients receiving head and neck radiotherapy with or without chemotherapy (Alliance A221304). Int. J. Radiat. Oncol. Biol. Phys. 96, 938 (2016).

    Article  Google Scholar 

  117. Goldgraber, M. B., Rubin, C. E., Palmer, W. L., Dobson, R. L. & Massey, B. W. The early gastric response to irradiation; a serial biopsy study. Gastroenterology 27, 1–20 (1954).

    CAS  PubMed  Google Scholar 

  118. Henriksson, R., Bergstrom, P., Franzen, L., Lewin, F. & Wagenius, G. Aspects on reducing gastrointestinal adverse effects associated with radiotherapy. Acta Oncol. 38, 159–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Hesketh, P. J., Bohlke, K. & Kris, M. G. Antiemetics: American society of clinical oncology focused guideline update. J. Oncol. Pract. 12, 88–89 (2016).

    Article  PubMed  Google Scholar 

  120. Wong, R. et al. 5-Hydroxytryptamine-3 receptor antagonist with or without short-course dexamethasone in the prophylaxis of radiation induced emesis: a placebo-controlled randomized trial of the National Cancer Institute of Canada Clinical Trials Group (SC19). J. Clin. Oncol. 24, 3458–3464 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Misirlioglu, C. H., Demirkasimoglu, T., Kucukplakci, B., Sanri, E. & Altundag, K. Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med. Oncol. 24, 308–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Abratt, R. P. & Morgan, G. W. Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 35, 103–109 (2002).

    Article  PubMed  Google Scholar 

  123. Jacobson, G. et al. Randomized trial of pentoxifylline and vitamin E versus standard follow-up after breast irradiation to prevent breast fibrosis, evaluated by tissue compliance meter. Int. J. Radiat. Oncol. Biol. Phys. 85, 604–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Delanian, S., Porcher, R., Balla-Mekias, S. & Lefaix, J. L. Randomized placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J. Clin. Oncol. 21, 2545–2550 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Graham, M. V. et al. Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 45, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Palma, D. A. et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 85, 444–450 (2013).

    Article  PubMed  Google Scholar 

  127. Kwa, S. L. et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int. J. Radiat. Oncol. Biol. Phys. 42, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Smith, J. C. Radiation pneumonitis: a review. Am. Rev. Respir. Dis. 87, 647–655 (1963).

    CAS  PubMed  Google Scholar 

  129. Ward, H. E., Kemsley, L., Davies, L., Holecek, M. & Berend, N. The effect of steroids on radiation-induced lung disease in the rat. Radiat. Res. 136, 22–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Sekine, I. et al. Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother. Oncol. 80, 93–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Jain, V. & Berman, A. T. Radiation pneumonitis: old problem, new tricks. Cancers 10, E222 (2018).

    Article  PubMed  Google Scholar 

  132. Sodergren, S. C. et al. Systematic review of the quality of life issues associated with anal cancer and its treatment with radiochemotherapy. Support. Care Cancer 23, 3613–3623 (2015).

    Article  PubMed  Google Scholar 

  133. The WHOQOL Group. Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol. Med. 28, 551–558 (1998).

    Article  Google Scholar 

  134. Siddiqui, F., Liu, A. K., Watkins-Bruner, D. & Movsas, B. Patient-reported outcomes and survivorship in radiation oncology: overcoming the cons. J. Clin. Oncol. 32, 2920 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bhat, S. R. et al. Profile of daily life in children with brain tumors: an assessment of health-related quality of life. J. Clin. Oncol. 23, 5493–5500 (2005).

    Article  PubMed  Google Scholar 

  136. Ringash, J. Quality of life in head and neck cancer: where we are, and where we are going. Int. J. Radiat. Oncol. Biol. Phys. 97, 662–666 (2017).

    Article  PubMed  Google Scholar 

  137. Nutting, C. M. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12, 127–136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rathod, S. et al. Quality-of-life (QOL) outcomes in patients with head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiation therapy (IMRT) compared to three-dimensional conformal radiotherapy (3D-CRT): evidence from a prospective randomized study. Oral Oncol. 49, 634–642 (2013).

    Article  PubMed  Google Scholar 

  139. Pow, E. H. et al. Xerostomia and quality of life after intensity-modulated radiotherapy versus conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 981–991 (2006).

    Article  PubMed  Google Scholar 

  140. Kam, M. K. et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J. Clin. Oncol. 25, 4873–4879 (2007).

    Article  PubMed  Google Scholar 

  141. Kuhlthau, K. A. et al. Prospective study of health-related quality of life for children with brain tumors treated with proton radiotherapy. J. Clin. Oncol. 30, 2079 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pui, C. H. et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 24, 371 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Liang, D. C. et al. Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia 24, 397 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Giuliani, M. et al. The prevalence and determinants of return to work in head and neck cancer survivors. Support. Care Cancer 27, 539–546 (2018).

    Article  PubMed  Google Scholar 

  145. Nguyen, N.-T. A. & Ringash, J. Head and neck cancer survivorship care: a review of the current guidelines and remaining unmet needs. Curr. Treat. Options Oncol. 19, 44 (2018).

    Article  PubMed  Google Scholar 

  146. Kerns, S. L. et al. Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncol. 10, 2391–2406 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Kerns, S. L. et al. Radiation biology and oncology in the genomic era. Br. J Radiol. 91, 20170949 (2018).

    Article  PubMed  Google Scholar 

  148. Brown, P. D. et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 15, 1429–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bernier, J., Hall, E. J. & Giaccia, A. Radiation oncology: a century of achievements. Nat. Rev. Cancer 4, 737–747 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Giaccia, A. J. Molecular radiobiology: the state of the art. J. Clin. Oncol. 32, 2871–2878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Moding, E. J., Mowery, Y. M. & Kirsch, D. G. Opportunities for radiosensitization in the stereotactic body radiation therapy (SBRT) era. Cancer J. 22, 267–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Burris, H. A. 3rd & Hurtig, J. Radiation recall with anticancer agents. Oncologist 15, 1227–1237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Reynders, K., Illidge, T., Siva, S., Chang, J. Y. & De Ruysscher, D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat. Rev. 41, 503–510 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rodriguez-Ruiz, M. E., Vanpouille-Box, C., Melero, I., Formenti, S. C. & Demaria, S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 39, 644–655 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Krull, K. R., Hardy, K. K., Kahalley, L. S., Schuitema, I. & Kesler, S. R. Neurocognitive outcomes & interventions in long-term survivors of childhood cancer. J. Clin. Oncol. 36, 2181–2189 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Packer, R. J. et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: childhood cancer survivor study. J. Clin. Oncol. 21, 3255–3261 (2003).

    Article  PubMed  Google Scholar 

  158. Bowers, D. C. et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 24, 5277–5282 (2006).

    Article  PubMed  Google Scholar 

  159. Haddy, N. et al. Relationship between the brain radiation dose for the treatment of childhood cancer and the risk of long-term cerebrovascular mortality. Brain 134, 1362–1372 (2011).

    Article  PubMed  Google Scholar 

  160. Clement, S. C. et al. Prevalence and risk factors of early endocrine disorders in childhood brain tumor survivors: a nationwide, multicenter study. J. Clin. Oncol. 34, 4362–4370 (2016).

    Article  PubMed  Google Scholar 

  161. Mostoufi-Moab, S. et al. Endocrine abnormalities in aging survivors of childhood cancer: a report from the childhood cancer survivor study. J. Clin. Oncol. 34, 3240 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Laughton, S. J. et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J. Clin. Oncol. 26, 1112–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Mertens, A. C. et al. Pulmonary complications in survivors of childhood and adolescent cancer: a report from the Childhood Cancer Survivor Study. Cancer 95, 2431–2441 (2002).

    PubMed  Google Scholar 

  164. Schellong, G. et al. Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for hodgkin disease in children and adolescents: Report from the longitudinal GPOH follow-up project of the German–Austrian DAL-HD studies. Pediatr. Blood Cancer 55, 1145–1152 (2010).

    Article  PubMed  Google Scholar 

  165. van der Pal, H. J. et al. High risk of symptomatic cardiac events in childhood cancer survivors. J. Clin. Oncol. 30, 1429–1437 (2012).

    Article  PubMed  Google Scholar 

  166. de Vathaire, F. et al. Radiation dose to the pancreas and risk of diabetes mellitus in childhood cancer survivors: a retrospective cohort study. Lancet Oncol. 13, 1002–1010 (2012).

    Article  PubMed  Google Scholar 

  167. Merchant, T. E. et al. Differential attenuation of clavicle growth after asymmetric mantle radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 556–561 (2004).

    Article  PubMed  Google Scholar 

  168. Paulino, A. C. Late effects of radiotherapy for pediatric extremity sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 60, 265–274 (2004).

    Article  PubMed  Google Scholar 

  169. Meacham, L. R. et al. Diabetes mellitus in long-term survivors of childhood cancer: increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch. Intern. Med. 169, 1381–1388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Goldsby, R. et al. Survivors of childhood cancer have increased risk of gastrointestinal complications later in life. Gastroenterology 140, 1464–1471 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Castellino, S. et al. Hepato-biliary late effects in survivors of childhood and adolescent cancer: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 54, 663–669 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Wasilewski-Masker, K. et al. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J. Cancer Surviv. 8, 437–447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Signorello, L. B. et al. Stillbirth and neonatal death in relation to radiation exposure before conception: a retrospective cohort study. Lancet 376, 624–630 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tukenova, M. et al. Long-term mortality from second malignant neoplasms in 5-year survivors of solid childhood tumors: temporal pattern of risk according to type of treatment. Cancer Epidemiol. Biomarkers Prev. 19, 707–715 (2010).

    Article  PubMed  Google Scholar 

  175. Journy, N. et al. Volume effects of radiotherapy on the risk of second primary cancers: a systematic review of clinical and epidemiological studies. Radiother. Oncol. https://doi.org/10.1016/j.radonc.2018.09.017 (2018).

    Article  PubMed  Google Scholar 

  176. Chang, E. L. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 10, 1037–1044 (2009).

    Article  PubMed  Google Scholar 

  177. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Nottage, K. A. et al. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia — from the St. Jude Lifetime Cohort. Br. J. Haematol. 165, 364–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hasegawa, H. et al. A comprehensive study of symptomatic late radiation-induced complications after radiosurgery for brain arteriovenous malformation: incidence, risk factors, and clinical outcomes. World Neurosurg. 116, e556–e565 (2018).

    Article  PubMed  Google Scholar 

  180. Appelman-Dijkstra, N. M. et al. Pituitary dysfunction in adult patients after cranial radiotherapy: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96, 2330–2340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Curran Jr, W. J. et al. Sequential versus concurrent chemoradiation for stage III non–small cell lung cancer: randomized phase III trial RTOG 9410. J. Natl Cancer Inst. 103, 1452–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cutter, D. J. et al. Risk for valvular heart disease after treatment for Hodgkin lymphoma. J. Natl. Cancer Inst. 107, djv008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Speirs, C. K. et al. Heart dose is an independent dosimetric predictor of overall survival in locally advanced non–small cell lung cancer. J. Thorac. Oncol. 12, 293–301 (2017).

    Article  PubMed  Google Scholar 

  184. Greenfield, D. et al. Metabolic syndrome is common following haematopoietic cell transplantation (HCT) and is associated with increased cardiovascular disease: an EBMT cross-sectional non-interventional study [abstract O154]. Bone Marrow Transplant. 50, S89–S90 (2015).

    Google Scholar 

  185. Ståhl, O. et al. Sperm DNA integrity in testicular cancer patients. Hum. Reprod. 21, 3199–3205 (2006).

    Article  PubMed  Google Scholar 

  186. Shalet, S. M., Tsatsoulis, A., Whitehead, E. & Read, G. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J. Endocrinol. 120, 161–165 (1989).

    Article  CAS  PubMed  Google Scholar 

  187. Howell, S. J. & Shalet, S. M. Spermatogenesis after cancer treatment: damage and recovery. J. Natl Cancer Inst. Monogr. 2005, 12–17 (2005).

    Article  CAS  Google Scholar 

  188. Groot, H. J. et al. Risk of diabetes after para-aortic radiation for testicular cancer. Br. J. Cancer 119, 901–907 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Al-Mamgani, A., van Putten, W. L., van der Wielen, G. J., Levendag, P. C. & Incrocci, L. Dose escalation and quality of life in patients with localized prostate cancer treated with radiotherapy: long-term results of the Dutch randomized dose-escalation trial (CKTO 96–10 trial). Int. J. Radiat. Oncol. Biol. Phys. 79, 1004–1012 (2011).

    Article  PubMed  Google Scholar 

  190. Pollack, A. et al. Prostate cancer radiation dose response: results of the MD Anderson phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 53, 1097–1105 (2002).

    Article  PubMed  Google Scholar 

  191. Zietman, A. L. et al. Comparison of conventional-dose versus high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294, 1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Jakubowicz, J. et al. Toxicity of concurrent chemoradiotherapy for locally advanced cervical cancer. Eur. J. Gynaecol. Oncol. 35, 393–399 (2014).

    CAS  PubMed  Google Scholar 

  193. Loren, A. W. et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 31, 2500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wallace, W. H. B., Thomson, A. B., Saran, F. & Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int. J. Radiat. Oncol. Biol. Phys. 62, 738–744 (2005).

    Article  PubMed  Google Scholar 

  195. Critchley, H. O. & Wallace, W. H. B. Impact of cancer treatment on uterine function. J. Natl Cancer Inst. Monogr. 2005, 64–68 (2005).

    Article  Google Scholar 

  196. Teh, W. T., Stern, C., Chander, S. & Hickey, M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res. Int. 2014, 482968 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Xie, L., Lin, C., Zhang, H. & Bao, X. Second malignancy in young early-stage breast cancer patients with modern radiotherapy: a long-term population-based study (a STROBE-compliant study). Medicine 97, e0593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Rombouts, A. J. M. et al. Does pelvic radiation increase rectal cancer incidence? A systematic review and meta-analysis. Cancer Treat. Rev. 68, 136–144 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks Z. Liao, J. Lucas and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.D.R.); Epidemiology (D.D.R. and F.H.-J.); Mechanisms/pathophysiology (D.D.R. and G.N.); Diagnosis, screening and prevention (D.D.R. and N.G.B.); Management (D.D.R. and S.S.); Quality of life (D.D.R., A.W.M.L and F.H.); Outlook (D.D.R.); Overview of the Primer (D.D.R.).

Corresponding author

Correspondence to Dirk De Ruysscher.

Ethics declarations

Competing interests

D.D.R. has served on advisory boards for AstraZeneca, Bristol-Meyers-Squibb, Celgene, Merck Serono/Pfizer and Genentech and has received research grants from Bristol-Meyers-Squibb and Boehringer Ingelheim. No personal fees were received, only fees to the institution. The remaining authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Ruysscher, D., Niedermann, G., Burnet, N.G. et al. Radiotherapy toxicity. Nat Rev Dis Primers 5, 13 (2019). https://doi.org/10.1038/s41572-019-0064-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0064-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer