Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing progress in radiotherapy for global cancer control

Abstract

The pace of technological innovation over the past three decades has transformed the field of radiotherapy into one of the most technologically intense disciplines in medicine. However, the global barriers to access this highly effective treatment are complex and extend beyond technological limitations. Here, we review the technological advancement and current status of radiotherapy and discuss the efforts of the global radiation oncology community to formulate a more integrative ‘diagonal approach’ in which the agendas of science-driven advances in individual outcomes and the sociotechnological task of global cancer control can be aligned to bring the benefit of this proven therapy to patients with cancer everywhere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the technological advances in radiotherapy from 1980 to today as well as those that can be anticipated by 2040.
Fig. 2: Technological convergence of image-guided IMRT.
Fig. 3: Radiation dose distributions can now be better targeted and shaped in 3D.
Fig. 4: Taking a diagonal approach to bring radiotherapy to the globe.

Similar content being viewed by others

References

  1. Quaresma, M., Coleman, M. P. & Rachet, B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: a population-based study. Lancet 385, 1206–1218 (2015).

    Article  PubMed  Google Scholar 

  2. Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).

    Article  PubMed  Google Scholar 

  3. Dzau, V. J., Balatbat, C. A. & Ellaissi, W. F. Revisiting academic health sciences systems a decade later: discovery to health to population to society. Lancet 398, 2300–2304 (2021).

    Article  PubMed  Google Scholar 

  4. Baumann, M. et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Mackie, T. R. et al. Tomotherapy. Semin. Radiat. Oncol. 9, 108–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Brahme, A. Optimization of stationary and moving beam radiation therapy techniques. Radiother. Oncol. 12, 129–140 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Jaffray, D. A. et al. How advances in imaging will affect precision radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 101, 292–298 (2018).

    Article  PubMed  Google Scholar 

  8. Brock, K. K. et al. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 64, 1245–1254 (2006).

    Article  PubMed  Google Scholar 

  9. Raaymakers, B. W. et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys. Med. Biol. 54, N229–N237 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Thwaites, D. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views? J. Phys. Conf. Ser. 444, 012006 (2013).

    Article  Google Scholar 

  11. Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives. Nat. Rev. Clin. Oncol. 9, 688–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Otazo, R. et al. MRI-guided radiation therapy: an emerging paradigm in adaptive radiation oncology. Radiology 298, 248–260 (2021).

    Article  PubMed  Google Scholar 

  13. Gooding, M. J. et al. Comparative evaluation of autocontouring in clinical practice: a practical method using the Turing test. Med. Phys. 45, 5105–5115 (2018).

    Article  PubMed  Google Scholar 

  14. McIntosh, C. et al. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method. Phys. Med. Biol. 62, 5926–5944 (2017).

    Article  PubMed  Google Scholar 

  15. Rigaud, B. et al. Automatic segmentation using deep learning to enable online dose optimization during adaptive radiation therapy of cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 109, 1096–1110 (2021).

  16. Lim, K. et al. Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, 147–154 (2014).

    Article  PubMed  Google Scholar 

  17. van Elmpt, W. et al. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J. Nucl. Med. 53, 1514–1520 (2012).

    Article  PubMed  Google Scholar 

  18. Butner, J. D. et al. A mathematical model for the quantification of a patient’s sensitivity to checkpoint inhibitors and long-term tumour burden. Nat. Biomed. Eng. 5, 297–308 (2021).

  19. Hormuth, D. A. et al. Image-based personalization of computational models for predicting response of high-grade glioma to chemoradiation. Sci. Rep. 11, 8520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, C. et al. Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophys. Rev. 3, 021304 (2022).

    Article  Google Scholar 

  21. Di Franco, R. et al. COVID-19 and radiotherapy: potential new strategies for patients management with hypofractionation and telemedicine. Eur. Rev. Med. Pharmacol. Sci. 24, 12480–12489 (2020).

    PubMed  Google Scholar 

  22. Aznar, M. C. et al. Radiation oncology in the new virtual and digital era. Radiother. Oncol. 154, A1–A4 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. McIntosh, C. et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat. Med. 27, 999–1005 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Kisling, K. et al. Fully automatic treatment planning for external-beam radiation therapy of locally advanced cervical cancer: a tool for low-resource clinics. J. Glob. Oncol. 5, 1–9 (2019).

    PubMed  Google Scholar 

  25. Ngwa, W. et al. Potential for information and communication technologies to catalyze global collaborations in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 91, 444–447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Segan, S. Tested: SpaceX’s Starlink satellite internet service is fast, but it'll cost you. PCMag https://www.pcmag.com/news/tested-spacexs-starlink-satellite-internet-service-is-fast-but-itll-cost (29 October 2020).

  27. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Kung, T. H. et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLoS Digit. Health 2, e0000198 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jaffray, D. A. et al. Quantitative imaging in radiation oncology: an emerging science and clinical service. Semin. Radiat. Oncol. 25, 292–304 (2015).

    Article  PubMed  Google Scholar 

  30. Clarke, L. P. et al. The Quantitative Imaging Network: NCI’s historical perspective and planned goals. Transl. Oncol. 7, 1–4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shukla-Dave, A. et al. Quantitative Imaging Biomarkers Alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 49, e101–e121 (2019).

    Article  PubMed  Google Scholar 

  32. Press, R. H. et al. The use of quantitative imaging in radiation oncology: a Quantitative Imaging Network (QIN) perspective. Int. J. Radiat. Oncol. Biol. Phys. 102, 1219–1235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maspero, M. et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys. Med. Biol. 63, 185001 (2018).

    Article  PubMed  Google Scholar 

  34. Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Islam, M. K. et al. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy. Med. Phys. 36, 5420–5428 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Teke, T. et al. Monte Carlo based, patient-specific RapidArc QA using Linac log files. Med. Phys. 37, 116–123 (2010).

    Article  PubMed  Google Scholar 

  38. Meidan, Y. et al. Detection of unauthorized IoT devices using machine learning techniques. Preprint at https://doi.org/10.48550/arXiv.1709.04647 (2017).

  39. Zhao, Y. et al. Clinical applications of 3-dimensional printing in radiation therapy. Med. Dosim. 42, 150–155 (2017).

    Article  PubMed  Google Scholar 

  40. Sarracanie, M. & Salameh, N. Low-field MRI: how low can we go? A fresh view on an old debate. Front. Phys. https://doi.org/10.3389/fphy.2020.00172 (2020).

  41. Fazio, M. Basic research needs workshop on compact accelerators for security and medicine: tools for the 21st century, May 6-8, 2019 OSTI.gov https://www.osti.gov/biblio/1631121 (2019).

  42. Bottura, L. et al. GaToroid: a novel toroidal gantry for hadron therapy. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 983, 164588 (2020).

  43. Maxim, P. G., Tantawi, S. G. & Loo, B. W. Jr. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 139, 28–33 (2019).

    Article  PubMed  Google Scholar 

  44. Shirvani, S. M. et al. Biology-guided radiotherapy: redefining the role of radiotherapy in metastatic cancer. Br. J. Radiol. 94, 20200873 (2021).

    Article  PubMed  Google Scholar 

  45. Vozenin, M. C., Hendry, J. H. & Limoli, C. L. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin. Oncol. 31, 407–415 (2019).

    Article  Google Scholar 

  46. Favaudon, V. et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra93 (2014).

    Article  PubMed  Google Scholar 

  47. Oraiqat, I. et al. An ionizing radiation acoustic imaging (iRAI) technique for real-time dosimetric measurements for FLASH radiotherapy. Med. Phys. 47, 5090–5101 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Taylor, P. A. et al. A roadmap to clinical trials for FLASH. Med. Phys. 49, 4099–4108 (2022).

  49. Vozenin, M. C., Bourhis, J. & Durante, M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol. 19, 791–803 (2022).

    Article  PubMed  Google Scholar 

  50. Al-Mamgani, A. et al. Dose escalation and quality of life in patients with localized prostate cancer treated with radiotherapy: long-term results of the Dutch randomized dose-escalation trial (CKTO 96-10 trial). Int. J. Radiat. Oncol. Biol. Phys. 79, 1004–1012 (2011).

    Article  PubMed  Google Scholar 

  51. Viani, G. A. et al. Intensity-modulated radiotherapy reduces toxicity with similar biochemical control compared with 3-dimensional conformal radiotherapy for prostate cancer: a randomized clinical trial. Cancer 122, 2004–2011 (2016).

    Article  PubMed  Google Scholar 

  52. Spratt, D. E. & Michalski, J. M. Long-term benefits of dose-escalation in localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 104, 798–800 (2019).

    Article  PubMed  Google Scholar 

  53. Nutting, C. M. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12, 127–136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta, T. et al. Intensity-modulated radiation therapy versus three-dimensional conformal radiotherapy in head and neck squamous cell carcinoma: long-term and mature outcomes of a prospective randomized trial. Radiat. Oncol. 15, 218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown, P. D. et al. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III trial NRG Oncology CC001. J. Clin. Oncol. 38, 1019–1029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kerkmeijer, L. G. W. et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: results from the FLAME randomized phase III trial. J. Clin. Oncol. 39, 787–796 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Whelan, T. J. et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 362, 513–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Offersen, B. V. et al. Hypofractionated versus standard fractionated radiotherapy in patients with early breast cancer or ductal carcinoma in situ in a randomized phase III trial: the DBCG HYPO trial. J. Clin. Oncol. 38, 3615–3625 (2020).

    Article  PubMed  Google Scholar 

  59. Murray Brunt, A. et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet 395, 1613–1626 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Greco, C. et al. The evolving role of external beam radiotherapy in localized prostate cancer. Semin. Oncol. 46, 246–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Catton, C. N. et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J. Clin. Oncol. 35, 1884–1890 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Widmark, A. et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 394, 385–395 (2019).

    Article  PubMed  Google Scholar 

  63. de Perrot, M. et al. Radiotherapy for the treatment of malignant pleural mesothelioma. Lancet Oncol. 18, e532–e542 (2017).

    Article  PubMed  Google Scholar 

  64. Cho, B. C. J. et al. Surgery for malignant pleural mesothelioma after radiotherapy (SMART): final results from a single-centre, phase 2 trial. Lancet Oncol. 22, 190–197 (2021).

    Article  PubMed  Google Scholar 

  65. Ng, S. P. et al. Patient outcomes after reirradiation of small skull base tumors using stereotactic body radiotherapy, intensity modulated radiotherapy, or proton therapy. J. Neurol. Surg. B Skull Base 81, 638–644 (2020).

    Article  PubMed  Google Scholar 

  66. Ho, J. C. & Phan, J. Reirradiation of head and neck cancer using modern highly conformal techniques. Head Neck 40, 2078–2093 (2018).

    Article  PubMed  Google Scholar 

  67. Vargo, J. A. et al. A multi-institutional comparison of SBRT and IMRT for definitive reirradiation of recurrent or second primary head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 100, 595–605 (2018).

    Article  PubMed  Google Scholar 

  68. Greco, C. et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 79, 1151–1157 (2011).

    Article  PubMed  Google Scholar 

  69. Yamada, Y. et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int. J. Radiat. Oncol. Biol. Phys. 71, 484–490 (2008).

    Article  PubMed  Google Scholar 

  70. Weichselbaum, R. R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Gutiontov, S. I., Pitroda, S. P. & Weichselbaum, R. R. Oligometastasis: past, present, future. Int. J. Radiat. Oncol. Biol. Phys. 108, 530–538 (2020).

    Article  PubMed  Google Scholar 

  72. Gomez, D. R. et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 37, 1558–1565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palma, D. A. et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J. Clin. Oncol. 38, 2830–2838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Beckham, T. H. et al. Metastasis-directed therapy for oligometastasis and beyond. Br. J. Cancer 124, 136–141 (2021).

    Article  PubMed  Google Scholar 

  75. Berger, T. et al. Importance of technique, target selection, contouring, dose prescription, and dose-planning in external beam radiation therapy for cervical cancer: evolution of practice from EMBRACE-I to II. Int. J. Radiat. Oncol. Biol. Phys. 104, 885–894 (2019).

    Article  PubMed  Google Scholar 

  76. Kirisits, C. et al. Quality assurance in MR image guided adaptive brachytherapy for cervical cancer: final results of the EMBRACE study dummy run. Radiother. Oncol. 117, 548–554 (2015).

    Article  PubMed  Google Scholar 

  77. Duke, S. L. et al. Implementing an online radiotherapy quality assurance programme with supporting continuous medical education—report from the EMBRACE-II evaluation of cervix cancer IMRT contouring. Radiother. Oncol. 147, 22–29 (2020).

    Article  PubMed  Google Scholar 

  78. Mazeron, R. et al. Dose–volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother. Oncol. 120, 412–419 (2016).

    Article  PubMed  Google Scholar 

  79. Serban, M. et al. Isodose surface volumes in cervix cancer brachytherapy: change of practice from standard (point A) to individualized image guided adaptive (EMBRACE I) brachytherapy. Radiother. Oncol. 129, 567–574 (2018).

    Article  PubMed  Google Scholar 

  80. Sturdza, A. et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother. Oncol. 120, 428–433 (2016).

    Article  PubMed  Google Scholar 

  81. Tan, L. T. et al. Change in patterns of failure after image-guided brachytherapy for cervical cancer: analysis from the RetroEMBRACE study. Int. J. Radiat. Oncol. Biol. Phys. 104, 895–902 (2019).

    Article  PubMed  Google Scholar 

  82. Pötter, R. et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN Working Group and the EMBRACE studies. Clin. Transl. Radiat. Oncol. 9, 48–60 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Schaub, L., Harrabi, S. B. & Debus, J. Particle therapy in the future of precision therapy. Br. J. Radiol. 93, 20200183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Raschke, F. et al. Dose dependent cerebellar atrophy in glioma patients after radio(chemo)therapy. Radiother. Oncol. 150, 262–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Kahalley, L. S. et al. Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J. Clin. Oncol. 38, 454–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lin, S. H. et al. Randomized phase IIB trial of proton beam therapy versus intensity-modulated radiation therapy for locally advanced esophageal cancer. J. Clin. Oncol. 38, 1569–1579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. LaRiviere, M. J. et al. Proton therapy. Hematol. Oncol. Clin. North Am. 33, 989–1009 (2019).

    Article  PubMed  Google Scholar 

  89. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Herrmann, K. et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 21, e146–e156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marcu, L. G. et al. Translational research in FLASH radiotherapy—from radiobiological mechanisms to in vivo results. Biomedicines 9, 181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bourhis, J. et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 139, 18–22 (2019).

    Article  PubMed  Google Scholar 

  94. Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Baumann, M. & Krause M. Tumor biology’s impact on clinical cure rates. in The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies (eds. Molls, M., Vaupel, P., Nieder, C. & Anscher, M. S.) (Springer, 2009).

  96. Bentzen, S. M. Quantitative clinical radiobiology. Acta Oncol. 32, 259–275 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Scott, J. G. et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 18, 202–211 (2017).

    Article  PubMed  Google Scholar 

  98. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lohaus, F. et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol. 113, 317–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Toustrup, K. et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 71, 5923–5931 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Löck, S. et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother. Oncol. 124, 533–540 (2017).

    Article  PubMed  Google Scholar 

  102. Zschaeck, S. et al. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother. Oncol. 149, 189–196 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grassberger, C. et al. Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 16, 729–745 (2019).

    Article  PubMed  Google Scholar 

  105. Shaverdian, N. et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 18, 895–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Theelen, W. et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5, 1276–1282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Weichselbaum, R. R. et al. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  PubMed  Google Scholar 

  110. Hwang, W. L. et al. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 15, 477–494 (2018).

    Article  PubMed  Google Scholar 

  111. Will immunotherapy really change radiotherapy? Lancet Oncol. 20, 1642–1644 (2019).

  112. Institute of Medicine Committee on Cancer Control in Low- and Middle-Income Countries. The National Academies Collection: reports funded by National Institutes of Health. in Cancer Control Opportunities in Low- and Middle-Income Countries (eds. Sloan, F. A. & Gelband, H.) (National Academies, 2007).

  113. Farmer, P. et al. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet 376, 1186–1193 (2010).

    Article  PubMed  Google Scholar 

  114. Global Task Forceon Expanded Access to Cancer Care and Control in Developing Countries. Closing the Cancer Divide: A Blueprint to Expand Access in Low and Middle Income Countries https://go.nature.com/3PBYJPA (2011).

  115. Pablos-Mendez, A. & Shademani, R. Knowledge translation in global health. J. Contin. Educ. Health Prof. 26, 81–86 (2006).

  116. Ooms, G. et al. The ‘diagonal’ approach to Global Fund financing: a cure for the broader malaise of health systems? Global. Health 4, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Knaul, F. M. et al. Achieving effective universal health coverage and diagonal approaches to care for chronic illnesses. Health Aff. 34, 1514–1522 (2015).

    Article  Google Scholar 

  118. Sepúlveda, J. et al. Improvement of child survival in Mexico: the diagonal approach. Lancet 368, 2017–2027 (2006).

    Article  PubMed  Google Scholar 

  119. Knaul, F. et al. Health system strengthening and cancer: a diagonal response to the challenge of chronicity. in Close the Cancer Divide: an Equity Imperative (eds. Knaul, F. M. et al.) (Harvard University, 2012).

  120. Frenk, J. & Gómez-Dantés, O. False dichotomies in global health: the need for integrative thinking. Lancet 389, 667–670 (2017).

    Article  PubMed  Google Scholar 

  121. Frenk, J. & Gómez-Dantés, O. False and real, but avoidable, dichotomies—authors’ reply. Lancet 390, 648 (2017).

    Article  PubMed  Google Scholar 

  122. Baumann, M. et al. What will radiation oncology look like in 2050? A look at a changing professional landscape in Europe and beyond. Mol. Oncol. 14, 1577–1585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Knaul, F. et al. (eds) Close the Cancer Divide: an Equity Imperative (Harvard University, 2012).

  124. Knaul, F. M. et al. The Lancet Commission on cancer and health systems: harnessing synergies to achieve solutions. Lancet 398, 1114–1116 (2021).

    Article  PubMed  Google Scholar 

  125. Pisters, P. Our Strategy: Maximizing our Impact on Humanity to Finally End Cancer 1–32 (MD Anderson Cancer Center, 2021).

  126. Barton, M. B. et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother. Oncol. 112, 140–144 (2014).

    Article  PubMed  Google Scholar 

  127. Rodin, D. et al. Mobilising expertise and resources to close the radiotherapy gap in cancer care. Clin. Oncol. 29, 135–140 (2017).

    Article  CAS  Google Scholar 

  128. Vapiwala, N. et al. Enhancing career paths for tomorrow’s radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 105, 52–63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dosanjh, M. et al. Developing innovative, robust and affordable medical linear accelerators for challenging environments. Clin. Oncol. 31, 352–355 (2019).

    Article  CAS  Google Scholar 

  130. Rodin, D. et al. Scale-up of radiotherapy for cervical cancer in the era of human papillomavirus vaccination in low-income and middle-income countries: a model-based analysis of need and economic impact. Lancet Oncol. 20, 915–923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schwab, K. The Fourth Industrial Revolution. World Economic Forum https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/ (2016).

  132. Lewis, P. J. et al. Radiotherapy planning and peer review in sub-Saharan Africa: a needs assessment and feasibility study of cloud-based technology to enable remote peer review and training. JCO Glob. Oncol. 7, 10–16 (2021).

    Article  PubMed  Google Scholar 

  133. Netherton, T. et al. Experience in commissioning the halcyon linac. Med. Phys. 46, 4304–4313 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, X. et al. The clinical application of 3D-printed boluses in superficial tumor radiotherapy. Front. Oncol. 11, 698773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dahele, M. et al. Practical considerations arising from the implementation of lung stereotactic body radiation therapy (SBRT) at a comprehensive cancer center. J. Thorac. Oncol. 3, 1332–1341 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Kaul, former chief innovation officer of the MD Anderson Cancer Center for her initial strategy work on the quadrants of the ‘two worlds’ that contributed to our development of the diagonal view point.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Jaffray.

Ethics declarations

Competing interests

D.A.J. is an inventor of the technology described in ref. 36; it is under the management of the University Health Network, Toronto, Canada. M.B., as CEO of DKFZ, Heidelberg, Germany, has signed contracts for research collaborations and commercial transfers with a large number of companies, including the transfer of 177Lu-PSMA mentioned in this Review. F.K. and M.G. declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Theodore Lawrence, C. Jillian Tsai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffray, D.A., Knaul, F., Baumann, M. et al. Harnessing progress in radiotherapy for global cancer control. Nat Cancer 4, 1228–1238 (2023). https://doi.org/10.1038/s43018-023-00619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00619-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing