Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles and mechanisms of alternative splicing in cancer — implications for care

Abstract

Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.

Key points

  • Alternative splicing enables the generation of distinct mRNA and protein isoforms from a single gene. Splicing is carried out by the spliceosome, one of the most complex molecular machineries of eukaryotic cells.

  • Splicing perturbations are common in cancer and are associated with mutations in and/or altered expression of the components of the splicing machinery.

  • Splicing perturbations contribute to every hallmark of cancer and can generate neoantigens relevant to the design of cancer vaccines and other immunotherapies.

  • Cancer cells generate advantageous splicing variants, at the cost of reducing the efficiency or fidelity of the splicing process, thus conferring a special susceptibility to splicing inhibitors and providing a therapeutic window for targeting the splicing process.

  • Small-molecule modulators of the spliceosome have demonstrated antitumour effects and are particularly active against cancer cells harbouring mutations in spliceosomal components.

  • Antisense oligonucleotides offer promise to modulate cancer-relevant alternative splicing decisions, with proof of concept for this type of therapy demonstrated by Nusinersen, a first-in-class treatment for patients with spinal muscular atrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pre-mRNA splicing and the spliceosome assembly pathway.
Fig. 2: Alternative splicing.
Fig. 3: Effect of cancer-associated mutations in splicing factors on alternative splice site selection.
Fig. 4: Effect of alternative splicing dysregulation on cancer progression.
Fig. 5: Influence of alternative splicing on cancer drug vulnerability and resistance.
Fig. 6: Approaches to modulate cancer-relevant splicing events.

Similar content being viewed by others

References

  1. Gallego-Paez, L. M. et al. Alternative splicing: the pledge, the turn, and the prestige: the key role of alternative splicing in human biological systems. Hum. Genet. 136, 1015–1042 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. David, C. J. & Manley, J. L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ladomery, M. Aberrant alternative splicing is another hallmark of cancer. Int. J. Cell Biol. 2013, 1–6 (2013).

    Google Scholar 

  5. Oltean, S. & Bates, D. O. Hallmarks of alternative splicing in cancer. Oncogene 33, 5311–5318 (2014).

    CAS  PubMed  Google Scholar 

  6. Urbanski, L. M., Leclair, N. & Anczuków, O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA 9, e1476 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. Nat. Rev. Drug Discov. 19, 112–129 (2020).

    CAS  PubMed  Google Scholar 

  8. Rahman, M. A., Krainer, A. R. & Abdel-Wahab, O. SnapShot: splicing alterations in cancer. Cell 180, 208–208 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    CAS  PubMed  Google Scholar 

  10. Frankiw, L., Baltimore, D. & Li, G. Alternative mRNA splicing in cancer immunotherapy. Nat. Rev. Immunol. 19, 675–687 (2019).

    CAS  PubMed  Google Scholar 

  11. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines-a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paschalis, A. et al. Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15, 663–675 (2018).

    CAS  PubMed  Google Scholar 

  13. Wang, B.-D. & Lee, N. H. Aberrant RNA splicing in cancer and drug resistance. Cancers 10, 458 (2018).

    CAS  PubMed Central  Google Scholar 

  14. Luebker, S. A. & Koepsell, S. A. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol. 9, 268 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Obeng, E. A. et al. Physiologic expression of Sf3b1 K700E causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shirai, C. L. et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat. Commun. 8, 14060 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S. C. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Haack, D. B. et al. Cryo-EM structures of a group II intron reverse splicing into DNA. Cell 178, 612–623 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    CAS  PubMed  Google Scholar 

  21. Papasaikas, P. & Valcárcel, J. The spliceosome: the ultimate RNA chaperone and sculptor. Trends Biochem. Sci. 41, 33–45 (2016).

    CAS  PubMed  Google Scholar 

  22. Rhine, C. L. et al. Hereditary cancer genes are highly susceptible to splicing mutations. PLoS Genet. 14, e1007231 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016).

    CAS  PubMed  Google Scholar 

  24. Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017).

    CAS  PubMed  Google Scholar 

  25. Plaschka, C., Lin, P. C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhan, X., Yan, C., Zhang, X., Lei, J. & Shi, Y. Structure of a human catalytic step I spliceosome. Science 359, 537–545 (2018).

    CAS  PubMed  Google Scholar 

  27. Fica, S. M., Oubridge, C., Wilkinson, M. E., Newman, A. J. & Nagai, K. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science 363, 710–714 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).

    CAS  PubMed  Google Scholar 

  29. Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574, 712–716 (2019).

    CAS  PubMed  Google Scholar 

  30. Suzuki, H. et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  PubMed  Google Scholar 

  32. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shirai, C. L. et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, S. M. et al. U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3’ end formation. Mol. Cell 62, 479–490 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Inoue, D. & Abdel-Wahab, O. Modeling SF3B1 mutations in cancer: advances, challenges, and opportunities. Cancer Cell 30, 371–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Visconte, V. et al. Splicing factor 3b subunit 1 (Sf3b1) haploinsufficient mice display features of low risk myelodysplastic syndromes with ring sideroblasts. J. Hematol. Oncol. 7, 89 (2015).

    Google Scholar 

  38. Matsunawa, M. et al. Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia. Leukemia 28, 1844–1850 (2014).

    CAS  PubMed  Google Scholar 

  39. Wang, C. et al. Depletion of Sf3b1 impairs proliferative capacity of hematopoietic stem cells but is not sufficient to induce myelodysplasia. Blood 123, 3336–3343 (2014).

    CAS  PubMed  Google Scholar 

  40. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Komeno, Y. et al. SRSF2 is essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing. Mol. Cell. Biol. 35, 3071–3082 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Palangat, M. et al. The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes Dev. 33, 482–497 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).

    CAS  PubMed  Google Scholar 

  44. Bai, R., Wan, R., Yan, C., Lei, J. & Shi, Y. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Science 360, 1423–1429 (2018).

    CAS  PubMed  Google Scholar 

  45. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2011).

    PubMed  Google Scholar 

  46. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J. et al. Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol. Cell 76, 82–95 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of Cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce Cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    CAS  PubMed  Google Scholar 

  50. Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Popp, M. W. & Maquat, L. E. Nonsense-mediated mRNA decay and cancer. Curr. Opin. Genet. Dev. 48, 44–50 (2018).

    CAS  PubMed  Google Scholar 

  52. Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schischlik, F. et al. Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms. Blood 134, 199–210 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiozawa, Y. et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat. Commun. 9, 3649 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Fu, X. D. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    CAS  PubMed  Google Scholar 

  58. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh, B., Trincado, J. L., Tatlow, P. J., Piccolo, S. R. & Eyras, E. Genome sequencing and RNA-motif analysis reveal novel damaging noncoding mutations in human tumors. Mol. Cancer Res. 16, 1112–1124 (2018).

    CAS  PubMed  Google Scholar 

  60. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).

    CAS  PubMed  Google Scholar 

  61. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl Acad. Sci. USA 112, E4726–E4734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bechara, E. G., Sebestyén, E., Bernardis, I., Eyras, E. & Valcárcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720–733 (2013).

    CAS  PubMed  Google Scholar 

  63. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hernández, J. et al. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 13, 466–472 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Verma, B., Akinyi, M. V., Norppa, A. J. & Frilander, M. J. Minor spliceosome and disease. Semin. Cell Dev. Biol. 79, 103–112 (2018).

    CAS  PubMed  Google Scholar 

  66. Shen, H., Zheng, X., Luecke, S. & Green, M. R. The U2AF35-related protein Urp contacts the 3′ splice site to promote U12-type intron splicing and the second step of U2-type intron splicing. Genes Dev. 24, 2389–2394 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042 (2015).

    CAS  PubMed  Google Scholar 

  68. König, H., Matter, N., Bader, R., Thiele, W. & Müller, F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131, 718–729 (2007).

    PubMed  Google Scholar 

  69. Chen, L. et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nguyen, H. D. et al. Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. Cancer Res. 78, 5363–5374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wan, R., Bai, R. & Shi, Y. Molecular choreography of pre-mRNA splicing by the spliceosome. Curr. Opin. Struct. Biol. 59, 124–133 (2019).

    CAS  PubMed  Google Scholar 

  73. Kurtovic-Kozaric, A. et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29, 126–136 (2015).

    CAS  PubMed  Google Scholar 

  74. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sebestyén, E. et al. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res. 26, 732–744 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R. A. & Skotheim, R. I. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413–2427 (2016).

    CAS  PubMed  Google Scholar 

  77. Johnston, H. E. et al. Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation. Mol. Cell. Proteom. 17, 776–791 (2018).

    CAS  Google Scholar 

  78. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Karni, R., Hippo, Y., Lowe, S. W. & Krainer, A. R. The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc. Natl Acad. Sci. USA 105, 15323–15327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Das, S., Anczuków, O., Akerman, M. & Krainer, A. R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep. 1, 110–117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Anczuków, O. et al. SRSF1-regulated alternative splicing in breast cancer. Mol. Cell 60, 105–117 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Denichenko, P. et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat. Commun. 10, 1590 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Janknecht, R. EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene 363, 1–14 (2005).

    CAS  PubMed  Google Scholar 

  84. Ma, Z. et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28, 220–221 (2001).

    CAS  PubMed  Google Scholar 

  85. Fidaleo, M. et al. Genotoxic stress inhibits ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget 6, 31740–31757 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Selvanathan, S. P. et al. EWS–FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res. 47, 9619–9636 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dvinge, H., Guenthoer, J., Porter, P. L. & Bradley, R. K. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res. 29, 1591–1604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kozlovski, I., Siegfried, Z., Amar-Schwartz, A. & Karni, R. The role of RNA alternative splicing in regulating cancer metabolism. Hum. Genet. 136, 1113–1127 (2017).

    CAS  PubMed  Google Scholar 

  89. Di, C. et al. Function, clinical application, and strategies of pre-mRNA splicing in cancer. Cell Death Differ. 26, 1181–1194 (2019).

    CAS  PubMed  Google Scholar 

  90. Jung, H. et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 47, 1242–1248 (2015).

    CAS  PubMed  Google Scholar 

  91. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    CAS  PubMed  Google Scholar 

  92. Ferrarese, R. et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J. Clin. Invest. 124, 2861–2876 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10, 177 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    CAS  PubMed  Google Scholar 

  95. Carné Trécesson, S. De. et al. BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nat. Commun. 8, 1123 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Kim, J.-H. et al. MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett. 583, 2758–2764 (2009).

    CAS  PubMed  Google Scholar 

  97. Gao, Y. & Koide, K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem. Biol. 8, 895–900 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Aird, D. et al. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat. Commun. 10, 137 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Biamonti, G., Maita, L. & Montecucco, A. The Krebs cycle connection: reciprocal influence between alternative splicing programs and cell metabolism. Front. Oncol. 8, 408 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Siegfried, Z. & Karni, R. The role of alternative splicing in cancer drug resistance. Curr. Opin. Genet. Dev. 48, 16–21 (2018).

    CAS  PubMed  Google Scholar 

  101. Crews, L. A. et al. RNA splicing modulation selectively impairs leukemia stem cell maintenance in secondary human AML. Cell Stem Cell 19, 599–612 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tsai, Y. S., Dominguez, D., Gomez, S. M. & Wang, Z. Transcriptome-wide identification and study of cancer-specific splicing events across multiple tumors. Oncotarget 6, 6825–6839 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Climente-González, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).

    PubMed  Google Scholar 

  104. Li, Y. et al. Revealing the determinants of widespread alternative splicing perturbation in cancer. Cell Rep. 21, 798–812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, Y. et al. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 393, 40–51 (2017).

    CAS  PubMed  Google Scholar 

  106. Bjørklund, S. S. et al. Widespread alternative exon usage in clinically distinct subtypes of invasive ductal carcinoma. Sci. Rep. 7, 5568 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. He, R. Q. et al. Prognostic signature of alternative splicing events in bladder urothelial carcinoma based on spliceseq data from 317 cases. Cell. Physiol. Biochem. 48, 1355–1368 (2018).

    CAS  PubMed  Google Scholar 

  109. Zhu, G.-Q. et al. Prognostic alternative mRNA splicing signature in hepatocellular carcinoma: a study based on large-scale sequencing data. Carcinogenesis 40, 1077–1085 (2019).

    CAS  PubMed  Google Scholar 

  110. Yang, Q., Zhao, J., Zhang, W., Chen, D. & Wang, Y. Aberrant alternative splicing in breast cancer. J. Mol. Cell Biol. 11, 920–929 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Miao, Y. et al. SF3B1 mutation predicts unfavorable treatment-free survival in Chinese chronic lymphocytic leukemia patients. Ann. Transl Med. 7, 176–176 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, J.-C. Therapeutic applications of targeted alternative splicing to cancer treatment. Int. J. Mol. Sci. 19, 75 (2017).

    PubMed Central  Google Scholar 

  113. Zhang, Z. et al. Deep-learning augmented RNA-seq analysis of transcript splicing. Nat. Methods 16, 307–310 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl Med. 10, eaau5516 (2018).

    CAS  PubMed  Google Scholar 

  116. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  119. Vauchy, C. et al. CD20 alternative splicing isoform generates immunogenic CD4 helper T epitopes. Int. J. Cancer 137, 116–126 (2015).

    CAS  PubMed  Google Scholar 

  120. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, S. C.-W. & Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat. Med. 22, 976–986 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoshimi, A. & Abdel-Wahab, O. Molecular pathways: understanding and targeting mutant spliceosomal proteins. Clin. Cancer Res. 23, 336–341 (2017).

    CAS  PubMed  Google Scholar 

  123. Nijhawan, D. et al. Cancer vulnerabilities unveiled by genomic loss. Cell 150, 842–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Paolella, B. R. et al. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. eLife 6, e23268 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Lagisetti, C. et al. Pre-mRNA splicing-modulatory pharmacophores: The total synthesis of herboxidiene, a pladienolide-herboxidiene hybrid analog and related derivatives. ACS Chem. Biol. 9, 643–648 (2014).

    CAS  PubMed  Google Scholar 

  126. Kashyap, M. K. et al. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica 100, 945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Fong, J. Y. et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Salton, M. et al. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. Nat. Commun. 6, 7103 (2015).

    CAS  PubMed  Google Scholar 

  130. Hsu, T. Y. T. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    CAS  PubMed  Google Scholar 

  132. Iwai, K. et al. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol. Med. 10, e8289 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Munding, E. M., Shiue, L., Katzman, S., Donohue, J. P. & Ares, M. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell 51, 338–348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dror, H. et al. A network-based analysis of colon cancer Splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Res. 26, 541–553 (2016).

    Google Scholar 

  135. Abou Faycal, C., Gazzeri, S. & Eymin, B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci. Rep. 9, 336 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Bonnal, S., Vigevani, L. & Valcárcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).

    CAS  PubMed  Google Scholar 

  137. Webb, T. R., Joyner, A. S. & Potter, P. M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov. Today 18, 43–49 (2013).

    CAS  PubMed  Google Scholar 

  138. León, B. et al. A challenging pie to splice: drugging the spliceosome. Angew. Chem. Int. Ed. 56, 12052–12063 (2017).

    Google Scholar 

  139. Cretu, C. et al. Structural basis of splicing modulation by antitumor macrolide compounds. Mol. Cell 70, 265–273 (2018).

    CAS  PubMed  Google Scholar 

  140. Finci, L. I. et al. The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Genes Dev. 32, 309–320 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Corrionero, A., Miñana, B. & Valcárcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Folco, E. G., Coil, K. E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 25, 440–444 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Teng, T. et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex. Nat. Commun. 8, 15522 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Vigevani, L., Gohr, A., Webb, T., Irimia, M. & Valcárcel, J. Molecular basis of differential 3′ splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat. Commun. 8, 2100 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Iwata, M. et al. E7107, a new 7-urethane derivative of pladienolide D, displays curative effect against several human tumor xenografts. Cancer Res. 64, 691 (2004).

    Google Scholar 

  146. Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2014).

    CAS  PubMed  Google Scholar 

  147. Eskens, F. A. L. M. et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).

    CAS  PubMed  Google Scholar 

  148. Liu, M. M. & Zack, D. J. Alternative splicing and retinal degeneration. Clin. Genet. 84, 142–149 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mozaffari-Jovin, S. et al. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol. 11, 298–312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Buskin, A. et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 9, 4234 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Steensma, D. P. et al. Results of a clinical trial of H3B-8800, a splicing modulator, in patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML). Blood 134, 673 (2019).

    Google Scholar 

  153. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    PubMed  Google Scholar 

  154. Uehara, T. et al. Selective degradation of splicing factor CAPER a by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    CAS  PubMed  Google Scholar 

  155. Dowhan, D. H. et al. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERα and CAPERβ. Mol. Cell 17, 429–439 (2005).

    CAS  PubMed  Google Scholar 

  156. Assi, R. et al. Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758–2765 (2018).

    CAS  PubMed  Google Scholar 

  157. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    CAS  PubMed  Google Scholar 

  158. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633.e3 (2019).

    CAS  PubMed  Google Scholar 

  159. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    CAS  PubMed  Google Scholar 

  160. Coomar, S. & Gillingham, D. G. Exploring DCAF15 for reprogrammable targeted protein degradation. bioRxiv https://doi.org/10.1101/542506 (2019).

    Article  Google Scholar 

  161. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015).

    CAS  PubMed  Google Scholar 

  162. Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell 65, 8–24 (2017).

    CAS  PubMed  Google Scholar 

  163. Gao, G. et al. PRMT1 loss sensitizes cells to PRMT5 inhibition. Nucleic Acids Res. 47, 5038–5048 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Gonsalvez, G. B. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol. 178, 733–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, L. et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 4, e07938 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Amin, E. M. et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20, 768–780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hatcher, J. M. et al. SRPKIN-1: a covalent SRPK1/2 inhibitor that potently converts VEGF from pro-angiogenic to anti-angiogenic isoform. Cell Chem. Biol. 25, 460–470 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jagtap, P. K. A. et al. Rational design of cyclic peptide inhibitors of U2AF homology motif (UHM) domains to modulate pre-mRNA splicing. J. Med. Chem. 59, 10190–10197 (2016).

    CAS  PubMed  Google Scholar 

  169. Sidarovich, A. et al. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. eLife 6, e23533 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Effenberger, K. A. et al. The natural product N-palmitoyl-L-leucine selectively inhibits late assembly of human spliceosomes. J. Biol. Chem. 290, 27524–27531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Iwatani-Yoshihara, M. et al. Discovery of allosteric inhibitors targeting the spliceosomal RNA helicase Brr2. J. Med. Chem. 60, 5759–5771 (2017).

    CAS  PubMed  Google Scholar 

  172. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    CAS  PubMed  Google Scholar 

  173. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rigo, F. et al. Pharmacology of a central nervous system delivered 2′-O-methoxyethyl- modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J. Pharmacol. Exp. Ther. 350, 46–55 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. Meylemans, A. & De Bleecker, J. Current evidence for treatment with nusinersen for spinal muscular atrophy: a systematic review. Acta Neurol. Belg. 119, 523–533 (2019).

    PubMed  Google Scholar 

  176. Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Taylor, J. K., Zhang, Q. Q., Wyatt, J. R. & Dean, N. M. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100 (1999).

    CAS  PubMed  Google Scholar 

  178. Mercatante, D. R., Bortner, C. D., Cidlowski, J. A. & Kole, R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells: analysis of apoptosis and cell death. J. Biol. Chem. 276, 16411–16417 (2001).

    CAS  PubMed  Google Scholar 

  179. Bauman, J. A., Li, S. D., Yang, A., Huang, L. & Kole, R. Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res. 38, 8348–8356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Mogilevsky, M. et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. 46, 11396–11404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Xu, X., Wang, Y. & Liang, H. The role of A-to-I RNA editing in cancer development. Curr. Opin. Genet. Dev. 48, 51–56 (2018).

    CAS  PubMed  Google Scholar 

  182. Fazi, F. & Fatica, A. Interplay between N6-methyladenosine (m6A) and non-coding RNAs in cell development and cancer. Front. Cell Dev. Biol. 7, 116 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Giannopoulou, E., Katsila, T., Mitropoulou, C., Tsermpini, E. E. & Patrinos, G. P. Integrating next-generation sequencing in the clinical pharmacogenomics workflow. Front. Pharmacol. 10, 384 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    CAS  PubMed  Google Scholar 

  186. Zhang, Z. et al. SF3B1 mutation is a prognostic factor in chronic lymphocytic leukemia: a meta-analysis. Oncotarget 8, 69916–69923 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. Brown, J. R. et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia 32, 83–91 (2018).

    CAS  PubMed  Google Scholar 

  188. Jeromin, S. et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 28, 108–117 (2014).

    CAS  PubMed  Google Scholar 

  189. Nadeu, F. et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia 32, 645–653 (2017).

    PubMed  PubMed Central  Google Scholar 

  190. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127, 2122–2130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Malcovati, L. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126, 233–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Malcovati, L. et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118, 6239–6246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Gangat, N. et al. Mutations and prognosis in myelodysplastic syndromes: karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am. J. Hematol. 93, 691–697 (2018).

    CAS  PubMed  Google Scholar 

  194. Tefferi, A. et al. Targeted next-generation sequencing in myelodysplastic syndromes and prognostic interaction between mutations and IPSS-R. Am. J. Hematol. 92, 1311–1317 (2017).

    CAS  PubMed  Google Scholar 

  195. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Nazha, A. et al. Incorporation of molecular data into the revised international prognostic scoring system in treated patients with myelodysplastic syndromes. Leukemia 30, 2214–2220 (2016).

    CAS  PubMed  Google Scholar 

  197. Traina, F. et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 28, 78–87 (2014).

    CAS  PubMed  Google Scholar 

  198. Mian, S. A. et al. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica 98, 1058–1066 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Komrokji, R. S. et al. Response to treatment among SF3B1 mutated myelodysplastic syndromes (MDS): a case-control study from the MDS clinical research consortium (MDS CRC). Blood 126, 1697 (2015).

    Google Scholar 

  200. Cui, R. et al. Clinical importance of SF3B1 mutations in Chinese with myelodysplastic syndromes with ring sideroblasts. Leuk. Res. 36, 1428–1433 (2012).

    CAS  PubMed  Google Scholar 

  201. Jafari, P. A. et al. Prognostic significance of SF3B1 mutations in patients with myelodysplastic syndromes: a meta-analysis. Crit. Rev. Oncol. Hematol. 145, 102832 (2020).

    PubMed  Google Scholar 

  202. Kang, M.-G. et al. The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts. BMC Cancer 15, 484 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Migdady, Y. et al. Clinical outcomes with ring sideroblasts and SF3B1 mutations in myelodysplastic syndromes: MDS clinical research consortium analysis. Clin. Lymphoma Myeloma Leuk. 18, 528–532 (2018).

    PubMed  Google Scholar 

  204. Mangaonkar, A. A. et al. Prognostic interaction between bone marrow morphology and SF3B1 and ASXL1 mutations in myelodysplastic syndromes with ring sideroblasts. Blood Cancer J. 8, 18 (2018).

    PubMed  PubMed Central  Google Scholar 

  205. Lasho, T. L. et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 26, 1135–1137 (2012).

    CAS  PubMed  Google Scholar 

  206. Hou, H. A. et al. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget 7, 9084–9101 (2016).

    PubMed  PubMed Central  Google Scholar 

  207. Rose, A. M. et al. Detection of mutations in SF3B1, EIF1AX and GNAQ in primary orbital melanoma by candidate gene analysis. BMC Cancer 18, 1262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Quek, C. et al. Recurrent hotspot SF3B1 mutations at codon 625 in vulvovaginal mucosal melanoma identified in a study of 27 Australian mucosal melanomas. Oncotarget 10, 930–941 (2019).

    PubMed  PubMed Central  Google Scholar 

  209. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Furney, S. J., Pedersen, M., Gentien, D. & Dumont, A. G. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 3, 1122–1129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Field, M. G. et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat. Commun. 9, 116 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Yavuzyigitoglu, S. et al. Uveal melanomas with SF3B1 mutations: a distinct subclass associated with late-onset metastases. Ophthalmology 123, 1118–1128 (2016).

    PubMed  Google Scholar 

  213. Fu, X. et al. SF3B1 mutation is a poor prognostic indicator in luminal B and progesterone receptor-negative breast cancer patients. Oncotarget 8, 115018–115027 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Arbab Jafari, P., Ayatollahi, H., Sadeghi, R., Sheikhi, M. & Asghari, A. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Hematology 23, 778–784 (2018).

    CAS  PubMed  Google Scholar 

  215. Zheng, X. et al. Prognostic value of SRSF2 mutations in patients with de novo myelodysplastic syndromes: a meta-analysis. PLoS One 12, e0185053 (2017).

    PubMed  PubMed Central  Google Scholar 

  216. Wu, L. et al. Genetic landscape of recurrent ASXL1, U2AF1, SF3B1, SRSF2, and EZH2 mutations in 304 Chinese patients with myelodysplastic syndromes. Tumor Biol. 37, 4633–4640 (2016).

    CAS  Google Scholar 

  217. Duchmann, M. et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine 31, 174–181 (2018).

    PubMed  PubMed Central  Google Scholar 

  218. Vannucchi, A. M. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 27, 1861–1869 (2013).

    CAS  PubMed  Google Scholar 

  219. Lasho, T. L. et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood 120, 4168–4171 (2012).

    CAS  PubMed  Google Scholar 

  220. Tefferi, A. et al. Integration of mutations and karyotype towards a genetics-based prognostic scoring system (GPSS) for primary myelofibrosis. Blood 124, 406 (2014).

    Google Scholar 

  221. Vannucchi, A. M. et al. Mutation-enhanced international prognostic scoring system (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT project. Blood 124, 405 (2014).

    Google Scholar 

  222. Rotunno, G. et al. Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: a study on 359 patients of the AGIMM group. Am. J. Hematol. 91, 681–686 (2016).

    CAS  PubMed  Google Scholar 

  223. Zhang, S. J. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 119, 4480–4485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Venton, G. et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am. J. Hematol. 93, 330–338 (2018).

    CAS  PubMed  Google Scholar 

  225. Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2012).

    CAS  Google Scholar 

  226. Wang, H. et al. Prognostic value of U2AF1 mutant in patients with de novo myelodysplastic syndromes: a meta-analysis. Ann. Hematol. 98, 2629–2639 (2019).

    CAS  PubMed  Google Scholar 

  227. Wu, S.-J. Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am. J. Hematol. 88, E277–E282 (2013).

    CAS  PubMed  Google Scholar 

  228. Li, B. et al. Clinical features and biological implications of U2AF1 mutations in myelodysplastic syndromes. Blood 130 (Suppl. 1), 586 (2017).

    Google Scholar 

  229. Tefferi, A. et al. U2AF1 mutation variants in myelodysplastic syndromes and their clinical correlates. Am. J. Hematol. 93, E146–E148 (2018).

    CAS  PubMed  Google Scholar 

  230. Thol, F. et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119, 3578–3584 (2012).

    CAS  PubMed  Google Scholar 

  231. Tefferi, A. et al. U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia 32, 2274–2278 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Barraco, D. et al. Molecular correlates of anemia in primary myelofibrosis: A significant and independent association with U2AF1 mutations. Blood Cancer J. 6, 11–13 (2016).

    Google Scholar 

  233. Choi, J. W. et al. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J. Mol. Cell Biol. 4, 164–173 (2012).

    PubMed  Google Scholar 

  234. Lee, H. S. et al. Chemical suppression of an oncogenic splicing variant of AIMP2 induces tumour regression. Biochem. J. 454, 411–416 (2013).

    CAS  PubMed  Google Scholar 

  235. Nadiminty, N. et al. NF-κB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol. Cancer Ther. 14, 1884–1895 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Tummala, R., Lou, W., Gao, A. C. & Nadiminty, N. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol. Cancer Ther. 16, 2770–2779 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Cai, L. et al. ZFX mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer. Mol. Cell 72, 341–354.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  239. Haferkamp, B. et al. BaxΔ2 is a novel bax isoform unique to microsatellite unstable tumors. J. Biol. Chem. 287, 34722–34729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Mercatante, D. R., Mohler, J. L. & Kole, R. Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J. Biol. Chem. 277, 49374–49382 (2002).

    CAS  PubMed  Google Scholar 

  241. Liu, J. et al. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 8, 77567–77585 (2017).

    PubMed  PubMed Central  Google Scholar 

  242. Berman, E. et al. Resistance to imatinib in patients with chronic myelogenous leukemia and the splice variant BCR-ABL1 35INS. Leuk. Res. 49, 108–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang, Y. et al. The BRCA1- 11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res. 76, 2778–2790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Meyer, S. et al. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis. 8, e2875 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Droin, N., Beauchemin, M., Solary, E. & Bertrand, R. Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Res. 60, 7039–7047 (2000).

    CAS  PubMed  Google Scholar 

  246. Végran, F., Boidot, R., Solary, E. & Lizard-Nacol, S. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 6, e29058 (2011).

    PubMed  PubMed Central  Google Scholar 

  247. Wang, Y. et al. Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 68, 5628–5638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Mukherjee, B. et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res. 69, 4252–4259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Ji, H. et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc. Natl Acad. Sci. USA 103, 7817–7822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Shi, L. et al. Expression of ER-α36, a novel variant of estrogen receptor α, and resistance to tamoxifen treatment in breast cancer. J. Clin. Oncol. 27, 3423–3429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Stark, M., Wichman, C., Avivi, I. & Assaraf, Y. G. Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 113, 4362–4369 (2009).

    CAS  PubMed  Google Scholar 

  252. Mitra, D. et al. An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol. Cancer Ther. 8, 2152–2162 (2009).

    CAS  PubMed  Google Scholar 

  253. Sridhar, J. et al. Identification of quinones as HER2 inhibitors for the treatment of trastuzumab resistant breast cancer. Bioorg. Med. Chem. Lett. 24, 126–131 (2014).

    CAS  PubMed  Google Scholar 

  254. Paul, P. et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc. Natl Acad. Sci. USA 95, 4510–4515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Prabhakar, B. S., Mulherkar, N. & Prasad, K. V. Role of IG20 splice variants in TRAIL resistance. Clin. Cancer Res. 14, 347–351 (2008).

    CAS  PubMed  Google Scholar 

  256. Turner, A. et al. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS One 8, e56817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Iacobucci, I. et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 112, 3847–3855 (2008).

    CAS  PubMed  Google Scholar 

  258. Frampton, G. M. et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET Inhibitors. Cancer Discov. 5, 850–859 (2015).

    CAS  PubMed  Google Scholar 

  259. Adesso, L. et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 32, 2848–2857 (2013).

    CAS  PubMed  Google Scholar 

  260. Wang, B. et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat. Commun. 8, 15921 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Xu, X.-M., Zhou, Y.-Q. & Wang, M.-H. Mechanisms of cytoplasmic β-catenin accumulation and its involvement in tumorigenic activities mediated by oncogenic splicing variant of the receptor originated from Nantes tyrosine kinase. J. Biol. Chem. 280, 25087–25094 (2005).

    CAS  PubMed  Google Scholar 

  262. Vivas-Mejia, P. E. et al. Silencing survivin splice variant 2B leads to antitumor activity in taxane-resistant ovarian cancer. Clin. Cancer Res. 17, 3716–3726 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Nutthasirikul, N. et al. Targeting the Δ133p53 isoform can restore chemosensitivity in 5-fluorouracil-resistant cholangiocarcinoma cells. Int. J. Oncol. 47, 2153–2164 (2015).

    CAS  PubMed  Google Scholar 

  264. Jiang, L. et al. Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 12, e1005895 (2016).

    PubMed  PubMed Central  Google Scholar 

  265. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  266. Lee, S. C.-W. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Xargay-Torrent, S. et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget 6, 22734–22749 (2015).

    PubMed  PubMed Central  Google Scholar 

  268. Stine, Z. E. & Dang, C. V. Splicing and dicing MYC-mediated synthetic lethality. Cancer Cell 28, 405–406 (2015).

    CAS  PubMed  Google Scholar 

  269. Yokoi, A. et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 278, 4870–4880 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dolors Colomer, Armando López-Guillermo and members of their laboratory for critical reading of the manuscript, and Adrian Krainer, Omar Abdel-Wahab and Rotem Karni for their constructive critique during the review process. I.L.-O. is a recipient of a Severo Ochoa PhD4MD Program Fellowship. The work of the authors is supported by the European Research Council, Worldwide Cancer Research, the Spanish Ministry of Economy and Competitiveness, the Agència de Gestió d’Ajuts Universitaris i de Recerca, and the Centre of Excellence Severo Ochoa Award (to the Centre for Genomic Regulation of the Barcelona Institute of Science and Technology).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the manuscript.

Corresponding author

Correspondence to Juan Valcárcel.

Ethics declarations

Competing interests

J.V. is a member of the Scientific Advisory Boards of Remix Therapeutics and Stoke Therapeutics. The other authors declare no competing interests.

Additional information

Reviewer information

Nature Reviews Clinical Oncology thanks Seishi Ogawa, Rotem Karni and another, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnal, S.C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer — implications for care. Nat Rev Clin Oncol 17, 457–474 (2020). https://doi.org/10.1038/s41571-020-0350-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0350-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer