Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dysregulation and therapeutic targeting of RNA splicing in cancer

Abstract

High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of RNA splicing and dysregulation in cancer.
Fig. 2: Recent advances in genomic analysis of RNA splicing.
Fig. 3: Chemical inhibitors of RNA splicing.
Fig. 4: Novel uses of splicing modulator drugs and synthetic introns responsive to splicing factor mutations.

Similar content being viewed by others

References

  1. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brody, E. & Abelson, J. The ‘spliceosome’: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–967 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Will, C. L. & Luhrmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).

  5. El Marabti, E., Malek, J. & Younis, I. Minor intron splicing from basic science to disease. Int. J. Mol. Sci. 22, 6062 (2021).

  6. Agafonov, D. E. et al. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351, 1416–1420 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Fica, S. M. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr. Opin. Struct. Biol. 65, 139–148 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, T. H. et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523, 47–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gerstein, M. B. et al. Comparative analysis of the transcriptome across distant species. Nature 512, 445–448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braberg, H. et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154, 775–788 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howard, J. M. & Sanford, J. R. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6, 93–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Thibault, P. A. et al. hnRNP A/B proteins: an encyclopedic assessment of their roles in homeostasis and disease. Biology 10, 712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schwerk, C. & Schulze-Osthoff, K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol. Cell 19, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, Z. H., Zhang, W. J., Rao, Y. & Wu, J. Y. Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc. Natl Acad. Sci. USA 95, 9155–9160 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, J. Y., Tang, H. & Havlioglu, N. Alternative pre-mRNA splicing and regulation of programmed cell death. Prog. Mol. Subcell. Biol. 31, 153–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kedzierska, H. & Piekielko-Witkowska, A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett. 396, 53–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Dou, Z. et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J. Exp. Clin. Cancer Res. 40, 194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, J. H. et al. MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett. 583, 2758–2764 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Supek, F., Minana, B., Valcarcel, J., Gabaldon, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Jung, H. et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat. Genet. 47, 1242–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anczukow, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Danan-Gotthold, M. et al. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 43, 5130–5144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts. Hum. Mol. Genet. 20, 4422–4429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  39. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, S., Benbarche, S. & Abdel-Wahab, O. Splicing factor mutations in hematologic malignancies. Blood 138, 599–612 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Teng, T. et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex. Nat. Commun. 8, 15522 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malcovati, L. et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood 136, 157–170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalton, W. B. et al. The K666N mutation in SF3B1 is associated with increased progression of MDS and distinct RNA splicing. Blood Adv. 4, 1192–1196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boultwood, J. et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS ONE 3, e1970 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Nikpour, M. et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia 27, 889–896 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clough, C. A. et al. Coordinated mis-splicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome. Blood 139, 2038–2048 (2021).

    Article  CAS  Google Scholar 

  52. Lieu, Y. K. et al. SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes. Proc. Natl Acad. Sci. USA 119, e2111703119 (2022).

  53. Zhang, J. et al. Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol. Cell 76, 82–95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Z. et al. Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation. Proc. Natl Acad. Sci. USA 117, 10305–10312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF–SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–4760 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Merendino, L., Guth, S., Bilbao, D., Martinez, C. & Valcarcel, J. Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 402, 838–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, S., Romfo, C. M., Nilsen, T. W. & Green, M. R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Reed, R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wheeler, E. C. et al. Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms. Cancer Discov. 12, 836–855 (2021).

    Article  Google Scholar 

  63. Smith, M. A. et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 21, 640–650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thol, F. et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119, 3578–3584 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Graveley, B. R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1, 765–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, H. X., Chew, S. L., Cartegni, L., Zhang, M. Q. & Krainer, A. R. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol. Cell. Biol. 20, 1063–1071 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaal, T. D. & Maniatis, T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell. Biol. 19, 261–273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Daubner, G. M., Clery, A., Jayne, S., Stevenin, J. & Allain, F. H. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 31, 162–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl Acad. Sci. USA 112, E4726–4734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Inoue, D. et al. Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nat. Genet. 53, 707–718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burge, C. B., Padgett, R. A. & Sharp, P. A. Evolutionary fates and origins of U12-type introns. Mol. Cell 2, 773–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Tarn, W. Y., Yario, T. A. & Steitz, J. A. U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1, 644–656 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki, H. et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574, 712–716 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Bousquets-Munoz, P. et al. PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2. NPJ Genom. Med. 7, 19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kurtovic-Kozaric, A. et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29, 126–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hernandez, J. et al. Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol. 13, 466–472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bechara, E. G., Sebestyen, E., Bernardis, I., Eyras, E. & Valcarcel, J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 52, 720–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Ghigna, C. et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20, 881–890 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Goncalves, V. et al. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA 20, 474–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tacke, R., Chen, Y. & Manley, J. L. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl Acad. Sci. USA 94, 1148–1153 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xiao, S. H. & Manley, J. L. Phosphorylation–dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17, 6359–6367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cao, S. et al. Discovery of driver non-coding splice-site-creating mutations in cancer. Nat. Commun. 11, 5573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mian, S. A. et al. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat. Commun. 6, 10004 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, S. C. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Taylor, J. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood 136, 1477–1486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhou, Q. et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 75, 1949–1958 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fei, D. L. et al. Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival. PLoS Genet. 12, e1006384 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Fan, L., Lagisetti, C., Edwards, C. C., Webb, T. R. & Potter, P. M. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem. Biol. 6, 582–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hasegawa, M. et al. Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem. Biol. 6, 229–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Yokoi, A. et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 278, 4870–4880 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Cretu, C. et al. Structural basis of splicing modulation by antitumor macrolide compounds. Mol. Cell 70, 265–273 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Eskens, F. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Crews, L. A. et al. RNA splicing modulation selectively impairs leukemia stem cell maintenance in secondary human AML. Cell Stem Cell 19, 599–612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Steensma, D. P. et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia 35, 3542–3550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ting, T. C. et al. Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4–DCAF15. Cell Rep. 29, 1499–1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

  108. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Assi, R. et al. Final results of a phase 2, open-label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer 124, 2758–2765 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Jagtap, P. K. A. et al. Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly. Nat. Commun. 11, 5621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kobayashi, A. et al. Identification of a small molecule splicing inhibitor targeting UHM domains. FEBS J. 289, 682–698 (2021).

    Article  PubMed  CAS  Google Scholar 

  115. Chatrikhi, R. et al. A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2–RNA complex. Cell Chem. Biol. 28, 1145–1157 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Mathew, R. et al. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat. Struct. Mol. Biol. 15, 435–443 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Edmond, V. et al. Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J. 30, 510–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Musiani, D. et al. Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Sci. Signal. 12, eaat8388 (2019).

  119. Fong, J. Y. et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Radzisheuskaya, A. et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat. Struct. Mol. Biol. 26, 999–1012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. McDonald, C. M. et al. Open-label evaluation of eteplirsen in patients with Duchenne muscular dystrophy amenable to exon 51 skipping: PROMOVI trial. J. Neuromuscul. Dis. 8, 989–1001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Walker, A. R. et al. Phase 3 randomized trial of chemotherapy with or without oblimersen in older AML patients: CALGB 10201 (Alliance). Blood Adv. 5, 2775–2787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10, 1808–1825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10, eaau5516 (2018).

  131. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, R. F. et al. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J. Immunol. 161, 3598–3606 (1998).

    CAS  PubMed  Google Scholar 

  133. Robbins, P. F. et al. The intronic region of an incompletely spliced gp100 gene transcript encodes an epitope recognized by melanoma-reactive tumor-infiltrating lymphocytes. J. Immunol. 159, 303–308 (1997).

    CAS  PubMed  Google Scholar 

  134. Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40, 209–217 (2021).

    Article  PubMed  CAS  Google Scholar 

  135. Lu, S. X. et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184, 4032–4047 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. North, K. et al. Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01224-2 (2022).

    Article  PubMed  Google Scholar 

  137. Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

    Article  PubMed  CAS  Google Scholar 

  140. Zhang, C., Zhang, B., Lin, L. L. & Zhao, S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics 18, 583 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. De Paoli-Iseppi, R., Gleeson, J. & Clark, M. B. Isoform age—splice isoform profiling using long-read technologies. Front. Mol. Biosci. 8, 711733 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, S. Y., Deng, F., Jia, X., Li, C. & Lai, S. J. A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing. Sci Rep. 7, 7648 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kim, J. A. et al. Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach. Genomics 111, 973–979 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Roach, N. P. et al. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res. 30, 299–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 49, 1731–1740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).

    Article  CAS  Google Scholar 

  149. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

R.F.S. was supported, in part, by MSK-ICTTP T32-CA009207 and an American Society of Hematology Research Training Award for Fellows. O.A.-W. is supported by the Leukemia & Lymphoma Society, NIH R01s CA251138, HL128239 and CA242020, NIH/NCI 1P50 254838-01 and the Edward P. Evans MDS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abdel-Wahab.

Ethics declarations

Competing interests

O.A.-W. has served as a consultant for H3B Biomedicine, Foundation Medicine, Inc., Merck, Prelude Therapeutics and Janssen and is on the Scientific Advisory Board of Envisagenics, Inc., AIChemy, Harmonic Discovery, Inc., and Pfizer Boulder. O.A.-W. has received prior research funding from H3B Biomedicine, Nurix Therapeutics and LOXO Oncology unrelated to the current manuscript. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks James Manley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, R.F., Abdel-Wahab, O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer 3, 536–546 (2022). https://doi.org/10.1038/s43018-022-00384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00384-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer