Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune and inflammatory mechanisms in hypertension

Abstract

Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.

Key points

  • Hypertension is a global health challenge, affecting >1.3 billion people worldwide, and the development of this condition is closely associated with inflammatory dysregulation and immune activation.

  • Immune cells such as CD8+ T cells, T helper 17 cells, regulatory T cells, monocytes, macrophages and B cells, as well as chemokines and cytokines, such as IL-17, IL-18, interferon-γ and tumour necrosis factor, have crucial roles in the immune mechanisms underlying hypertension.

  • Relevant immune mechanisms can be grouped into two clusters: those involved in the regulation of the initial immune and inflammatory activation, and the immune effector mechanisms linking the immune system to end-organ mechanisms that regulate blood pressure.

  • Dendritic cells presenting neoantigens, NLRP3 inflammasome activity and neuroimmune activation all contribute to the immune activation process in hypertension.

  • Activated immune cells migrate to target organs, such as the arteries (especially the perivascular fat and adventitia), kidneys and brain, causing end-organ damage and elevating the blood pressure.

  • A deeper understanding of the immune crosstalk between the upstream regulators and downstream effectors in hypertension will enable the application of these findings effectively in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A complex network of immune and inflammatory interactions in the pathogenesis of hypertension.
Fig. 2: Role of perivascular inflammation in hypertension-mediated vascular damage.
Fig. 3: Mechanisms of inflammatory regulation of hypertension.

Similar content being viewed by others

References

  1. Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article  Google Scholar 

  3. Schutte, A. E. et al. Addressing global disparities in blood pressure control: perspectives of the International Society of Hypertension. Cardiovasc. Res. 119, 381–409 (2022).

    Article  PubMed Central  Google Scholar 

  4. Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Freeman, M. W. et al. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N. Engl. J. Med. 388, 395–405 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Murray, E. C. et al. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc. Res. 117, 2589–2609 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garshick, M. S., Ward, N. L., Krueger, J. G. & Berger, J. S. Cardiovascular risk in patients with psoriasis: JACC review topic of the week. J. Am. Coll. Cardiol. 77, 1670–1680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panoulas, V. F. et al. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology 46, 1477–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Munoz Aguilera, E. et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc. Res. 116, 28–39 (2020).

    Article  PubMed  Google Scholar 

  11. Eke, P. I. et al. Periodontitis in US adults: National Health and Nutrition Examination Survey 2009-2014. J. Am. Dent. Assoc. 149, 576–588.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma, S. et al. Periodontal therapy and treatment of hypertension-alternative to the pharmacological approach. A systematic review and meta-analysis. Pharmacol. Res. 166, 105511 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Czesnikiewicz-Guzik, M. et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J. 40, 3459–3470 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Munoz Aguilera, E. et al. Is systemic inflammation a missing link between periodontitis and hypertension? Results from two large population-based surveys. J. Intern. Med. 289, 532–546 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Guzik, T. J. & Czesnikiewicz-Guzik, M. Mounting pressure of periodontitis. Hypertension 78, 552–554 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Abramson, J. L., Lewis, C., Murrah, N. V., Anderson, G. T. & Vaccarino, V. Relation of C-reactive protein and tumor necrosis factor-alpha to ambulatory blood pressure variability in healthy adults. Am. J. Cardiol. 98, 649–652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abramson, J. L., Weintraub, W. S. & Vaccarino, V. Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension 39, 197–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bautista, L. E., Vera, L. M., Arenas, I. A. & Gamarra, G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-ɑ) and essential hypertension. J. Hum. Hypertens. 19, 149–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Sesso, H. D. et al. Plasma inflammatory markers and the risk of developing hypertension in men. J. Am. Heart Assoc. 4, e001802 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, L. et al. Circulating inflammatory and endothelial markers and risk of hypertension in white and black postmenopausal women. Clin. Chem. 57, 729–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, H. et al. Role of the CCL2-CCR2 axis in cardiovascular disease: pathogenesis and clinical implications. Front. Immunol. 13, 975367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabkin, S. W. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat. Clin. Pract. Cardiovasc. Med. 6, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  23. Thomas, J. M. et al. IL-18 (Interleukin-18) produced by renal tubular epithelial cells promotes renal inflammation and injury during deoxycorticosterone/salt-induced hypertension in mice. Hypertension 78, 1296–1309 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan, S. M., Sobey, C. G., Latz, E., Mansell, A. & Drummond, G. R. IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br. J. Pharmacol. 171, 5589–5602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sesso, H. D., Wang, L., Buring, J. E., Ridker, P. M. & Gaziano, J. M. Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension in women. Hypertension 49, 304–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Siedlinski, M. et al. White blood cells and blood pressure: a mendelian randomization study. Circulation 141, 1307–1317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X. et al. Blood neutrophil to lymphocyte ratio as a predictor of hypertension. Am. J. Hypertens. 28, 1339–1346 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jhuang, Y. H. et al. Neutrophil to lymphocyte ratio as predictor for incident hypertension: a 9-year cohort study in Taiwan. Hypertens. Res. 42, 1209–1214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu, J. P. et al. Systemic inflammation markers and the prevalence of hypertension: a NHANES cross-sectional study. Hypertens. Res. 46, 1009–1019 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Loperena, R. et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114, 1547–1563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mikolajczyk, T. P. et al. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus. Lupus 25, 18–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Youn, J. C. et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 62, 126–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Delaney, J. A. C. et al. Natural killer cells, gamma delta T cells and classical monocytes are associated with systolic blood pressure in the multi-ethnic study of atherosclerosis (MESA). BMC Cardiovasc. Disord. 21, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gackowska, L. et al. Loss of CD31 receptor in CD4+ and CD8+ T-cell subsets in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J. Hypertens. 36, 2148–2156 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Ehret, G. B., O’Connor, A. A., Weder, A., Cooper, R. S. & Chakravarti, A. Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur. J. Hum. Genet. 17, 1650–1657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pineda, B. et al. Polymorphisms in genes involved in T-cell co-stimulation are associated with blood pressure in women. Gene 754, 144838 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Huan, T. et al. Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Mol. Syst. Biol. 11, 799 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. The International Consortium for Blood Pressure Genome-Wide Association Studies Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  PubMed Central  Google Scholar 

  40. Devalliere, J. & Charreau, B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem. Pharmacol. 82, 1391–1402 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Saleh, M. A. et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J. Clin. Invest. 125, 1189–1202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huan, T. et al. A meta-analysis of gene expression signatures of blood pressure and hypertension. PLoS Genet. 11, e1005035 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eales, J. M. et al. Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nat. Genet. 53, 630–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Zucker, R., Kovalerchik, M. & Linial, M. Gene-based association study reveals a distinct female genetic signal in primary hypertension. Hum. Genet. 142, 863–878 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116, 1022–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amador, C. A. et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63, 797–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Caillon, A. et al. γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135, 2155–2162 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Taherzadeh, Z. et al. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. Am. J. Physiol. Heart Circ. Physiol. 298, H1273–H1282 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Hidalgo, A. et al. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc. Res. 118, 2737–2753 (2021).

    Article  PubMed Central  Google Scholar 

  52. Sreejit, G. et al. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc. Res. 118, 2596–2609 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vital, S. A., Terao, S., Nagai, M. & Granger, D. N. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation 17, 641–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pollow, D. P. et al. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 64, 384–390 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Marvar, P. J. et al. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol. Psychiatry 71, 774–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, J. et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114, 616–625 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, J. et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J. Clin. Invest. 126, 50–67 (2016).

    Article  PubMed  Google Scholar 

  60. Dinh, Q. N. et al. Aldosterone-induced hypertension is sex-dependent, mediated by T cells and sensitive to GPER activation. Cardiovasc. Res. 117, 960–970 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Mattson, D. L. et al. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R407–R414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wade, B., Petrova, G. & Mattson, D. L. Role of immune factors in angiotensin II-induced hypertension and renal damage in Dahl salt-sensitive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R323–R333 (2018).

    Article  PubMed  Google Scholar 

  63. Abais-Battad, J. M., Lund, H., Fehrenbach, D. J. & Dasinger, J. H. Rag1-null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein-induced hypertension and renal injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R28–R35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Crowley, S. D. et al. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1089–R1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, H. et al. Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension 64, 573–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Ji, H. et al. Loss of resistance to angiotensin II-induced hypertension in the Jackson Laboratory recombination-activating gene null mouse on the C57BL/6J background. Hypertension 69, 1121–1127 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Seniuk, A. et al. B6.Rag1 knockout mice generated at the Jackson Laboratory in 2009 show a robust wild-type hypertensive phenotype in response to Ang II (Angiotensin II). Hypertension 75, 1110–1116 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Uchida, H. A. et al. Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis 211, 399–403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sylvester, M. A. et al. Splenocyte transfer from hypertensive donors eliminates premenopausal female protection from ANG II-induced hypertension. Am. J. Physiol. Ren. Physiol. 322, F245–F257 (2022).

    Article  CAS  Google Scholar 

  70. Madhur, M. S., Kirabo, A., Guzik, T. J. & Harrison, D. G. From rags to riches: moving beyond RAG1 in studies of hypertension. Hypertension 75, 930–934 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Nosalski, R. et al. T-cell-derived miRNA-214 mediates perivascular fibrosis in hypertension. Circ. Res. 126, 988–1003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rudemiller, N. et al. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63, 559–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez-Iturbe, B., Pons, H. & Johnson, R. J. Role of the immune system in hypertension. Physiol. Rev. 97, 1127–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pons, H. et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. Ren. Physiol. 304, F289–F299 (2013).

    Article  CAS  Google Scholar 

  76. Colvert, C. A. et al. Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner. Am. J. Physiol. Ren. Physiol. 325, F22–F37 (2023).

    Article  CAS  Google Scholar 

  77. Pober, J. S., Merola, J., Liu, R. & Manes, T. D. Antigen presentation by vascular cells. Front. Immunol. 8, 1907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Aydin, S. et al. Antigen recognition detains CD8+ T cells at the blood-brain barrier and contributes to its breakdown. Nat. Commun. 14, 3106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taflin, C. et al. Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 108, 2891–2896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ngwenyama, N. et al. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction. Nat. Cardiovasc. Res. 1, 761–774 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Biancardi, V. C., Bomfim, G. F., Reis, W. L., Al-Gassimi, S. & Nunes, K. P. The interplay between angiotensin II, TLR4 and hypertension. Pharmacol. Res. 120, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Bomfim, G. F. et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin. Sci. 122, 535–543 (2012).

    Article  CAS  Google Scholar 

  83. McCarthy, C. G. et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc. Res. 107, 119–130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Takahashi, M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc. Res. 118, 372–385 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Krishnan, S. M. et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc. Res. 115, 776–787 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Krishnan, S. M. et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br. J. Pharmacol. 173, 752–765 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, J. et al. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab. 23, 360–368 (2016).

    Article  PubMed  Google Scholar 

  89. Xiao, L., do Carmo, L. S., Foss, J. D., Chen, W. & Harrison, D. G. Sympathetic enhancement of memory T-cell homing and hypertension sensitization. Circ. Res. 126, 708–721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Calvillo, L., Gironacci, M. M., Crotti, L., Meroni, P. L. & Parati, G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat. Rev. Cardiol. 16, 476–490 (2019).

    Article  PubMed  Google Scholar 

  91. Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 379–394 (2022).

    Article  PubMed  Google Scholar 

  92. Carnevale, D. et al. The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension. Immunity 41, 737–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Carnevale, L. et al. Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells. Cell Rep. 33, 108494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carnevale, D. et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Olofsson, P. S. et al. ɑ7 nicotinic acetylcholine receptor (ɑ7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 18, 539–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Banek, C. T. et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68, 1415–1423 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Munakata, M. Clinical significance of stress-related increase in blood pressure: current evidence in office and out-of-office settings. Hypertens. Res. 41, 553–569 (2018).

    Article  PubMed  Google Scholar 

  101. Maaliki, D., Itani, M. M. & Itani, H. A. Pathophysiology and genetics of salt-sensitive hypertension. Front. Physiol. 13, 1001434 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ruggeri Barbaro, N. et al. Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovasc. Res. 117, 1358–1371 (2021).

    Article  PubMed  Google Scholar 

  103. Jantsch, J. et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 21, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Binger, K. J. et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kleinewietfeld, M. & Hafler, D. A. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin. Immunol. 25, 305–312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Norlander, A. E. et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2, e92801 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Van Beusecum, J. P. et al. High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74, 555–563 (2019).

    Article  PubMed  Google Scholar 

  109. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pitzer, A. et al. DC ENaC-dependent inflammasome activation contributes to salt-sensitive hypertension. Circ. Res. 131, 328–344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kopp, C. et al. 23Na magnetic resonance imaging of tissue sodium. Hypertension 59, 167–172 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Schneider, M. P. et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J. Am. Soc. Nephrol. 28, 1867–1876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chachaj, A. et al. Role of the lymphatic system in the pathogenesis of hypertension in humans. Lymphat. Res. Biol. 16, 140–146 (2018).

    Article  PubMed  Google Scholar 

  114. Zhuang, T. et al. A2AR-mediated lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive hypertension. Eur. Heart J. 44, 2730–2742 (2023).

    Article  PubMed  Google Scholar 

  115. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Balasubbramanian, D. et al. Augmenting renal lymphatic density prevents angiotensin II-induced hypertension in male and female mice. Am. J. Hypertens. 33, 61–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Wiig, H. et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 123, 2803–2815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Goodlett, B. L. et al. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin. Sci. 136, 1759–1772 (2022).

    Article  CAS  Google Scholar 

  119. Nosalski, R. & Guzik, T. J. Skin sodium, lymphatics, and blood pressure: a non-canonical mechanism of salt-sensitive hypertension. Eur. Heart J. 44, 2743–2745 (2023).

    Article  PubMed  Google Scholar 

  120. Lee, H., Jeong, S. & Shin, E. C. Significance of bystander T cell activation in microbial infection. Nat. Immunol. 23, 13–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Pacheco, Y. et al. Bystander activation and autoimmunity. J. Autoimmun. 103, 102301 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Thomas, J. M., Huuskes, B. M., Sobey, C. G., Drummond, G. R. & Vinh, A. The IL-18/IL-18R1 signalling axis: diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacol. Ther. 239, 108191 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Valente, A. J. et al. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Am. J. Physiol. Heart Circ. Physiol. 303, H282–H296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sahar, S. et al. Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ. Res. 96, 1064–1071 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Morel, J. C., Park, C. C., Woods, J. M. & Koch, A. E. A novel role for interleukin-18 in adhesion molecule induction through NFκB and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J. Biol. Chem. 276, 37069–37075 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Hyodo, Y. et al. IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J. Immunol. 162, 1662–1668 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Gunturk, E. E., Gunturk, I., Topuz, A. N., Akkaya, H. & Topuz, M. Serum interleukin-18 levels are associated with non-dipping pattern in newly diagnosed hypertensive patients. Blood Press. Monit. 26, 87–92 (2021).

    Article  PubMed  Google Scholar 

  129. Thorand, B. et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes 54, 2932–2938 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Evans, J. et al. The association of interleukin-18 genotype and serum levels with metabolic risk factors for cardiovascular disease. Eur. J. Endocrinol. 157, 633–640 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Ren, H. M., Lukacher, A. E., Rahman, Z. S. M. & Olsen, N. J. New developments implicating IL-21 in autoimmune disease. J. Autoimmun. 122, 102689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Spolski, R. & Leonard, W. J. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug. Discov. 13, 379–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Dale, B. L. et al. Critical role of Interleukin 21 and T follicular helper cells in hypertension and vascular dysfunction. JCI Insight 5, e129278 (2019).

    Article  PubMed  Google Scholar 

  134. McInnes, I. B., Leung, B. P., Sturrock, R. D., Field, M. & Liew, F. Y. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-ɑ production in rheumatoid arthritis. Nat. Med. 3, 189–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Laurent, C. et al. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. Neurol. Neuroimmunol. Neuroinflamm. 8, e931 (2021).

    Article  PubMed  Google Scholar 

  136. Villadsen, L. S. et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest. 112, 1571–1580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aringer, M. et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology 40, 876–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Stumpf, C. et al. Serum levels of the Th1 chemoattractant interferon-gamma-inducible protein (IP) 10 are elevated in patients with essential hypertension. Hypertens. Res. 34, 484–488 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Li, R. et al. Interleukin-7 induces recruitment of monocytes/macrophages to endothelium. Eur. Heart J. 33, 3114–3123 (2012).

    Article  PubMed  Google Scholar 

  140. Bullenkamp, J. et al. Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovasc. Res. 117, 1935–1948 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Nosalski, R. & Guzik, T. J. IL-15 and IL-7: keys to dysregulated inflammation in acute coronary syndromes. Cardiovasc. Res. 117, 1806–1808 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Paiva, R. A., Ramos, C. V., Leiria, G. & Martins, V. C. IL-7 receptor drives early T lineage progenitor expansion. J. Immunol. 209, 1942–1949 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Pachynski, R. K. et al. IL-7 expands lymphocyte populations and enhances immune responses to sipuleucel-T in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 9, e002903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rosenberg, S. A. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hartgring, S. A., Willis, C. R., Bijlsma, J. W., Lafeber, F. P. & van Roon, J. A. Interleukin-7-aggravated joint inflammation and tissue destruction in collagen-induced arthritis is associated with T-cell and B-cell activation. Arthritis Res. Ther. 14, R137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wuttge, D. M., Eriksson, P., Sirsjo, A., Hansson, G. K. & Stemme, S. Expression of interleukin-15 in mouse and human atherosclerotic lesions. Am. J. Pathol. 159, 417–423 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gokkusu, C. et al. Influences of genetic variants in interleukin-15 gene and serum interleukin-15 levels on coronary heart disease. Cytokine 49, 58–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Hu, W., Wang, H., Wang, Z., Huang, H. & Dong, M. Elevated serum levels of interleukin-15 and interleukin-16 in preeclampsia. J. Reprod. Immunol. 73, 166–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. El-Baradie, S. M., Mahmoud, M. & Makhlouf, H. H. Elevated serum levels of interleukin-15, interleukin-16, and human chorionic gonadotropin in women with preeclampsia. J. Obstet. Gynaecol. Can. 31, 142–148 (2009).

    Article  PubMed  Google Scholar 

  150. Kalantar, F. et al. Serum levels of tumor necrosis factor-ɑ, interleukin-15 and interleukin-10 in patients with pre-eclampsia in comparison with normotensive pregnant women. Iran. J. Nurs. Midwifery Res. 18, 463–466 (2013).

    PubMed  PubMed Central  Google Scholar 

  151. Kaibe, M. et al. Serum interleukin-15 concentration in patients with essential hypertension. Am. J. Hypertens. 18, 1019–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Ferrante, G. & Condorelli, G. Interleukin-6 trans-signalling and risk of future cardiovascular events: a new avenue for atheroprotection? Cardiovasc. Res. 115, 8–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int. J. Mol. Sci. 18, 2563 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Molitor, M. et al. Aircraft noise exposure induces pro-inflammatory vascular conditioning and amplifies vascular dysfunction and impairment of cardiac function after myocardial infarction. Cardiovasc. Res. 119, 1416–1426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Korn, T. & Hiltensperger, M. Role of IL-6 in the commitment of T cell subsets. Cytokine 146, 155654 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Manhiani, M. M. et al. The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II. Physiol. Rep. 3, e12595 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Itani, H. A. et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118, 1233–1243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, X. et al. Single-cell transcriptome profiling reveals enriched memory T-cell subpopulations in hypertension. Front. Cell Dev. Biol. 11, 1132040 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Fukuda, S., Tsuchikura, S. & Iida, H. Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm. Exp. Anim. 53, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Svendsen, U. G. Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol. Microbiol. Scand. A 84, 523–528 (1976).

    CAS  PubMed  Google Scholar 

  162. Ba, D., Takeichi, N., Kodama, T. & Kobayashi, H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J. Immunol. 128, 1211–1216 (1982).

    Article  CAS  PubMed  Google Scholar 

  163. Olsen, F. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol. Microbiol. Scand. C. 88, 1–5 (1980).

    CAS  PubMed  Google Scholar 

  164. Ventola, D. A. & Strausser, H. R. Evaluation of T cell subpopulation and function in thymosin treated spontaneously hypertensive rats. Thymus 6, 129–141 (1984).

    CAS  PubMed  Google Scholar 

  165. Okuda, T. & Grollman, A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex. Rep. Biol. Med. 25, 257–264 (1967).

    CAS  PubMed  Google Scholar 

  166. Santisteban, M. M. et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ. Res. 117, 178–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, L. et al. Genetic and pharmacologic inhibition of the chemokine receptor CXCR2 prevents experimental hypertension and vascular dysfunction. Circulation 134, 1353–1368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rudemiller, N. P. et al. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation. Hypertension 65, 1111–1117 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28–44 (2022).

    Article  PubMed  Google Scholar 

  170. Wu, J. et al. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension 67, 461–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Itani, M. M. et al. Sphingosine 1 phosphate promotes hypertension specific memory T cell trafficking in response to repeated hypertensive challenges. Front. Physiol. 13, 930487 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Nosalski, R. & Guzik, T. J. Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 174, 3496–3513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mikolajczyk, T. P. et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 30, 1987–1999 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mikolajczyk, T. P. et al. Role of inflammatory chemokines in hypertension. Pharmacol. Ther. 223, 107799 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Piqueras, L. & Sanz, M. J. Angiotensin II and leukocyte trafficking: new insights for an old vascular mediator. Role of redox-signaling pathways. Free. Radic. Biol. Med. 157, 38–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Lopez Gelston, C. A. et al. Enhancing renal lymphatic expansion prevents hypertension in mice. Circ. Res. 122, 1094–1101 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Beaini, S. et al. VEGF-C attenuates renal damage in salt-sensitive hypertension. J. Cell Physiol. 234, 9616–9630 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Hevia, D. et al. Myeloid CD11c+ antigen-presenting cells ablation prevents hypertension in response to angiotensin II plus high-salt diet. Hypertension 71, 709–718 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Alexander, Y. et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 117, 29–42 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Drummond, G. R., Selemidis, S., Griendling, K. K. & Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug. Discov. 10, 453–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Murray, E. C. et al. Vascular phenotypes in early hypertension. J. Hum. Hypertens. 37, 898–906 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rizzoni, D. et al. Immune system and microvascular remodeling in humans. Hypertension 79, 691–705 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Fernandez-Castelo, S. et al. Angiotensin II regulates interferon-γ production. J. Interferon Res. 7, 261–268 (1987).

    Article  CAS  PubMed  Google Scholar 

  186. Kamat, N. V. et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Benson, L. N. et al. The IFNγ-PDL1 pathway enhances CD8T-DCT interaction to promote hypertension. Circ. Res. 130, 1550–1564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kossmann, S. et al. Angiotensin II-induced vascular dysfunction depends on interferon-γ-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler. Thromb. Vasc. Biol. 33, 1313–1319 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, J. D. et al. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res. 110, 1604–1617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sun, X. N. et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ. Res. 120, 1584–1597 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Marko, L. et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60, 1430–1436 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Satou, R. & Gonzalez-Villalobos, R. A. JAK-STAT and the renin-angiotensin system: the role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAKSTAT 1, 250–256 (2012).

    PubMed  PubMed Central  Google Scholar 

  193. Shokoples, B. G. et al. Angiotensin II-induced a steeper blood pressure elevation in IL-23 receptor-deficient mice: role of interferon-γ-producing T cells. Hypertens. Res. 46, 40–49 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Saleh, M. A., Norlander, A. E. & Madhur, M. S. Inhibition of interleukin 17-A but not interleukin-17F signaling lowers blood pressure and reduces end-organ inflammation in angiotensin II-induced hypertension. JACC Basic. Transl. Sci. 1, 606–616 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Higaki, A., Mahmoud, A. U. M., Paradis, P. & Schiffrin, E. L. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc. Res. 117, 1274–1283 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Karbach, S. et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler. Thromb. Vasc. Biol. 34, 2658–2668 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Platten, M. et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc. Natl Acad. Sci. USA 106, 14948–14953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Orejudo, M. et al. Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin. Sci. 134, 513–527 (2020).

    Article  CAS  Google Scholar 

  199. Nguyen, H. et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc. Res. 97, 696–704 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Tipton, A. J., Baban, B. & Sullivan, J. C. Female spontaneously hypertensive rats have a compensatory increase in renal regulatory T cells in response to elevations in blood pressure. Hypertension 64, 557–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Singh, M. V. et al. Abnormal CD161+ immune cells and retinoic acid receptor-related orphan receptor γt-mediate enhanced IL-17F expression in the setting of genetic hypertension. J. Allergy Clin. Immunol. 140, 809–821.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cao, Y. et al. IL (interleukin)-17A acts in the brain to drive neuroinflammation, sympathetic activation, and hypertension. Hypertension 78, 1450–1462 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Chae, C. U., Lee, R. T., Rifai, N. & Ridker, P. M. Blood pressure and inflammation in apparently healthy men. Hypertension 38, 399–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Ridker, P. M., Rifai, N., Stampfer, M. J. & Hennekens, C. H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Mengozzi, A. et al. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J. Hypertens. 41, 1521–1543 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Lee, D. L. et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am. J. Physiol. Heart Circ. Physiol. 290, H935–H940 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Brands, M. W. et al. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension 56, 879–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  208. Lee, D. L., Wilson, J. L., Duan, R., Hudson, T. & El-Marakby, A. Peroxisome proliferator-activated receptor-ɑ activation decreases mean arterial pressure, plasma interleukin-6, and COX-2 while increasing renal CYP4A expression in an acute model of DOCA-salt hypertension. PPAR Res. 2011, 502631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Funakoshi, Y., Ichiki, T., Ito, K. & Takeshita, A. Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension 34, 118–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Coles, B. et al. Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. Am. J. Pathol. 171, 315–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hashmat, S. et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am. J. Physiol. Ren. Physiol. 311, F555–F561 (2016).

    Article  CAS  Google Scholar 

  212. Zhang, W. et al. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension 59, 136–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Gonzalez, G. E. et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J. Hypertens. 33, 144–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schrader, L. I., Kinzenbaw, D. A., Johnson, A. W., Faraci, F. M. & Didion, S. P. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arterioscler. Thromb. Vasc. Biol. 27, 2576–2581 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Naya, M. et al. Plasma interleukin-6 and tumor necrosis factor-ɑ can predict coronary endothelial dysfunction in hypertensive patients. Hypertens. Res. 30, 541–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Wassmann, S. et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ. Res. 94, 534–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Orshal, J. M. & Khalil, R. A. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1013–R1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Hung, M. J., Cherng, W. J., Hung, M. Y., Wu, H. T. & Pang, J. H. Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. J. Hypertens. 28, 940–951 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Kranzhofer, R. et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623–1629 (1999).

    Article  CAS  PubMed  Google Scholar 

  220. Melendez, G. C. et al. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56, 225–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  221. Yang, Y. et al. Interleukin-9 deletion relieves vascular dysfunction and decreases blood pressure via the STAT3 pathway in angiotensin II-treated mice. Mediators Inflamm. 2020, 5741047 (2020).

    PubMed  PubMed Central  Google Scholar 

  222. Zhuang, R. et al. Perivascular fibrosis is mediated by a KLF10-IL-9 signaling axis in CD4+ T cells. Circ. Res. 130, 1662–1681 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, Y. Y. Tumor necrosis factor-alpha g308alpha gene polymorphism and essential hypertension: a meta-analysis involving 2244 participants. PLoS ONE 7, e35408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sriramula, S., Haque, M., Majid, D. S. & Francis, J. Involvement of tumor necrosis factor-ɑ in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51, 1345–1351 (2008).

    Article  CAS  PubMed  Google Scholar 

  225. Huang, B. et al. Renal tumor necrosis factor ɑ contributes to hypertension in Dahl salt-sensitive rats. Sci. Rep. 6, 21960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhao, Q. et al. Association between anti-TNF therapy for rheumatoid arthritis and hypertension: a meta-analysis of randomized controlled trials. Medicine 94, e731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang, H. X. et al. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice. Cardiovasc. Res. 115, 83–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Didion, S. P., Kinzenbaw, D. A., Schrader, L. I., Chu, Y. & Faraci, F. M. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension 54, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  229. Kassan, M., Galan, M., Partyka, M., Trebak, M. & Matrougui, K. Interleukin-10 released by CD4+CD25+ natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 31, 2534–2542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zemse, S. M., Hilgers, R. H. & Webb, R. C. Interleukin-10 counteracts impaired endothelium-dependent relaxation induced by ANG II in murine aortic rings. Am. J. Physiol. Heart Circ. Physiol. 292, H3103–H3108 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Yang, T. et al. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Avery, E. G. et al. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc. Res. 119, 1441–1452 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Jama, H. A. et al. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. Nat. Cardiovasc. Res. 2, 35–43 (2023).

    Article  Google Scholar 

  235. Hotez, P. J. Linking tropical infections to hypertension: new comorbid disease paradigms in our era of “blue marble health”. J. Am. Heart Assoc. 8, e03984 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Etyang, A. O. et al. Effect of previous exposure to malaria on blood pressure in Kilifi, Kenya: a Mendelian randomization study. J. Am. Heart Assoc. 8, e011771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Etyang, A. O., Smeeth, L., Cruickshank, J. K. & Scott, J. A. The malaria-high blood pressure hypothesis. Circ. Res. 119, 36–40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Gallego-Delgado, J., Walther, T. & Rodriguez, A. The high blood pressure-malaria protection hypothesis. Circ. Res. 119, 1071–1075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nwokocha, C. R., Bafor, E. E., Ajayi, O. I. & Ebeigbe, A. B. The malaria-high blood pressure hypothesis: revisited. Am. J. Hypertens. 33, 695–702 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Hui, J. et al. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien. Klin. Wochenschr. 128, 586–591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Li, C., Samaranayake, N. R., Ong, K. L., Wong, H. K. & Cheung, B. M. Is human cytomegalovirus infection associated with hypertension? The United States National Health and Nutrition Examination Survey 1999-2002. PLoS ONE 7, e39760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cheng, J. et al. Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog. 5, e1000427 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26, 1623–1635 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat. Biotechnol. 39, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Lim, G. B. ACEi reduces hypertension-induced hyperinflammation in COVID-19. Nat. Rev. Cardiol. 18, 231 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Davis, K. et al. Association between HIV infection and hypertension: a global systematic review and meta-analysis of cross-sectional studies. BMC Med. 19, 105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Masenga, S. K. et al. Patho-immune mechanisms of hypertension in HIV: a systematic and thematic review. Curr. Hypertens. Rep. 21, 56 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Regnault, V., Challande, P., Pinet, F., Li, Z. & Lacolley, P. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc. Res. 117, 1841–1858 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Furman, D. et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Rothman, A. M. et al. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk: a secondary analysis of CANTOS. Hypertension 75, 477–482 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Takamura, C. et al. Suppression of murine autoimmune myocarditis achieved with direct renin inhibition. J. Cardiol. 68, 253–260 (2016).

    Article  PubMed  Google Scholar 

  252. Mikolajczyk, T. P. et al. 1,2,3,4,6-Penta-O-galloyl-β-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension. Br. J. Pharmacol. 176, 1951–1965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. De Miguel, C., Das, S., Lund, H. & Mattson, D. L. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1136–R1142 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Batchu, N. et al. Role of Axl in T-lymphocyte survival in salt-dependent hypertension. Arterioscler. Thromb. Vasc. Biol. 36, 1638–1646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Perrotta, M. et al. Deoxycorticosterone acetate-salt hypertension activates placental growth factor in the spleen to couple sympathetic drive and immune system activation. Cardiovasc. Res. 114, 456–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Chen, X. H. et al. Deficiency of complement C3a and C5a receptors prevents angiotensin II-induced hypertension via regulatory T cells. Circ. Res. 122, 970–983 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Kim, J. Y., Lee, E., Koo, S., Kim, C. W. & Kim, I. Transfer of Th17 from adult spontaneous hypertensive rats accelerates development of hypertension in juvenile spontaneous hypertensive rats. Biomed. Res. Int. 2021, 6633825 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  258. De Ciuceis, C. et al. Relationship between different subpopulations of circulating CD4+ T-lymphocytes and microvascular structural alterations in humans. Am. J. Hypertens. 30, 51–60 (2017).

    Article  PubMed  Google Scholar 

  259. Ji, Q. et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis. Markers 2017, 7146290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Imiela, A. M. et al. Th17/Treg imbalance in patients with primary hyperaldosteronism and resistant hypertension. Pol. Arch. Intern. Med. 132, 16171 (2022).

    PubMed  Google Scholar 

  261. Lu, X. et al. Classical dendritic cells mediate hypertension by promoting renal oxidative stress and fluid retention. Hypertension 75, 131–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Alexander, M. R. et al. Immune profiling reveals decreases in circulating regulatory and exhausted T cells in human hypertension. JACC Basic. Transl. Sci. 8, 319–336 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Olofsson, P. S. et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34, 1066–1071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kvakan, H. et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119, 2904–2912 (2009).

    Article  CAS  PubMed  Google Scholar 

  265. Kanellakis, P., Dinh, T. N., Agrotis, A. & Bobik, A. CD4+CD25+Foxp3+ regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J. Hypertens. 29, 1820–1828 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Chan, C. T. et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66, 1023–1033 (2015).

    Article  CAS  PubMed  Google Scholar 

  267. Dingwell, L. S. et al. B-cell deficiency lowers blood pressure in mice. Hypertension 73, 561–570 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Chen, Y. et al. Class switching and high-affinity immunoglobulin G production by B cells is dispensable for the development of hypertension in mice. Cardiovasc. Res. 117, 1217–1228 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Nosalski, R. et al. Nox1/4 inhibition exacerbates age dependent perivascular inflammation and fibrosis in a model of spontaneous hypertension. Pharmacol. Res. 161, 105235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Suryaprabha, P., Padma, T. & Rao, U. B. Increased serum IgG levels in essential hypertension. Immunol. Lett. 8, 143–145 (1984).

    Article  CAS  PubMed  Google Scholar 

  271. Hilme, E., Herlitz, H., Soderstrom, T. & Hansson, L. Increased secretion of immunoglobulins in malignant hypertension. J. Hypertens. 7, 91–95 (1989).

    Article  CAS  PubMed  Google Scholar 

  272. De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25, 2106–2113 (2005).

    Article  PubMed  Google Scholar 

  273. Wenzel, P. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124, 1370–1381 (2011).

    Article  CAS  PubMed  Google Scholar 

  274. Chan, C. T. et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension 60, 1207–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  275. Moore, J. P. et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309, H906–H917 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Huang, L. et al. Macrophage depletion lowered blood pressure and attenuated hypertensive renal injury and fibrosis. Front. Physiol. 9, 473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Czopek, A. et al. A novel role for myeloid endothelin-B receptors in hypertension. Eur. Heart J. 40, 768–784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Guyonnet, L. et al. Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney Int. 98, 1193–1209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Weinberger, T. et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11, 4549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Ko, E. A. et al. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 292, H1789–H1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  281. Frenis, K. et al. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic. Res. Cardiol. 116, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Alexander, M. R. et al. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br. J. Pharmacol. 176, 2015–2027 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Shah, K. H. et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 117, 858–869 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Morton, J. et al. Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNγ-dependent iNOS expression in the vasculature of healthy mice. Blood 111, 5187–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Yildirim, A., Russell, J., Yan, L. S., Senchenkova, E. Y. & Granger, D. N. Leukocyte-dependent responses of the microvasculature to chronic angiotensin II exposure. Hypertension 60, 1503–1509 (2012).

    Article  CAS  PubMed  Google Scholar 

  286. Khraibi, A. A., Smith, T. L., Hutchins, P. M., Lynch, C. D. & Dusseau, J. W. Thymectomy delays the development of hypertension in Okamoto spontaneously hypertensive rats. J. Hypertens. 5, 537–541 (1987).

    Article  CAS  PubMed  Google Scholar 

  287. Bataillard, A., Freiche, J. C., Vincent, M., Sassard, J. & Touraine, J. L. Antihypertensive effect of neonatal thymectomy in the genetically hypertensive LH rat. Thymus 8, 321–330 (1986).

    CAS  PubMed  Google Scholar 

  288. Svendsen, U. G. The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol. Microbiol. Scand. A 84, 235–243 (1976).

    CAS  PubMed  Google Scholar 

  289. Svendsen, U. G. Influence of neonatal thymectomy on blood pressure and hypertensive vascular disease in rats with renal hypertension. Acta Pathol. Microbiol. Scand. A 83, 199–205 (1975).

    CAS  PubMed  Google Scholar 

  290. Olsen, F. Evidence for an immunological factor in the hypertensive vascular disease. Acta Pathol. Microbiol. Scand. A 79, 22–26 (1971).

    CAS  PubMed  Google Scholar 

  291. Nosalski, R., McGinnigle, E., Siedlinski, M. & Guzik, T. J. Novel immune mechanisms in hypertension and cardiovascular risk. Curr. Cardiovasc. Risk Rep. 11, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Muller, D. N. et al. NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35, 193–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  293. Muller, D. N. et al. Effect of bosentan on NF-κB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension 36, 282–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  294. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.J.G. is funded by the European Research Council (ERC and InflammaTENSION; ERC-CoG-726318), British Heart Foundation (FS/14/49/30838 and FS/4yPhD/F/20/34127A), as part of the British Heart Foundation Centre for Research Excellence at the University of Edinburgh (RE/18/5/34216), and CVD ERA-CVD (GutBrainImmune and ImmuneHyperCog, NCBiR, Poland). T.J.G. and P.M. are supported by the British Heart Foundation (PG/19/84/34771, FS/19/56/34893A, PG/21/10541 and PG/21/10634). R.N. is funded by the Chancellor’s Fellowship at the University of Edinburgh.

Author information

Authors and Affiliations

Authors

Contributions

T.J.G. and R.N. researched data for the article and wrote the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tomasz J. Guzik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Annet Kirabo, Ernesto L. Schiffrin, Philip Wenzel, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzik, T.J., Nosalski, R., Maffia, P. et al. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-023-00964-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-023-00964-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing