Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Semimetallic molecular hydrogen at pressure above 350 GPa

Abstract

According to theoretical predictions, insulating molecular hydrogen dissociates and transforms into an atomic metal at pressures P ≈ 370–500 GPa (refs. 1,2,3). In another scenario, the metallization first occurs in the 250–500 GPa pressure range in molecular hydrogen through overlapping of electronic bands4,5,6,7. The calculations are not accurate enough to predict which option is realized. Here, we show that at a pressure of 350–360 GPa and temperatures <200 K, the hydrogen starts to conduct, and that the temperature dependence of the electrical conductivity is typical of a semimetal. The conductivity, measured up to 440 GPa, increases strongly with pressure. Raman spectra, measured up to 480 GPa, indicate that hydrogen remains a molecular solid at pressures up to 440 GPa, while at higher pressures the Raman signal vanishes, probably indicating further transformation to a good molecular metal or to an atomic state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-temperature part of the phase diagram of hydrogen.
Fig. 2: Raman scattering from hydrogen taken at T 100 K.
Fig. 3: Electrical resistance of hydrogen at different pressures.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

    Article  ADS  Google Scholar 

  2. Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).

    Article  Google Scholar 

  3. McMinis, J. III, Clay, R. C., Lee, D. & Morales, M. A. Molecular to atomic phase transition in hydrogen under high pressure. Phys. Rev. Lett. 114, 105305 (2015).

    Article  ADS  Google Scholar 

  4. Johnson, K. A. & Ashcroft, N. W. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000).

    Article  ADS  Google Scholar 

  5. Rillo, G., Morales, M. A., Ceperley, D. M. & Pierleoni, C. Coupled electron–ion Monte Carlo simulation of hydrogen molecular crystals. J. Chem. Phys. 148, 102314 (2018).

    Article  ADS  Google Scholar 

  6. Azadi, S., Singh, R. & Kuehne, T. D. Nuclear quantum effects induce metallization of dense solid molecular hydrogen. J. Comput. Chem. 39, 262–268 (2018).

    Article  Google Scholar 

  7. Azadi, S., Drummond, N. D. & Foulkes, W. M. C. Nature of the metallization transition in solid hydrogen. Phys. Rev. B 95, 035142 (2017).

    Article  ADS  Google Scholar 

  8. Azadi, S., Monserrat, B., Foulkes, W. M. C. & Needs, R. J. Dissociation of high-pressure solid molecular hydrogen: a quantum Monte Carlo and anharmonic vibrational study. Phys. Rev. Lett. 112, 165501 (2014).

    Article  ADS  Google Scholar 

  9. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1750 (1968).

    Article  ADS  Google Scholar 

  10. Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

    Article  ADS  Google Scholar 

  11. Y.Geng, H. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extrem. 2, 275–277 (2017).

    Article  Google Scholar 

  12. Eremets, M. I., Troyan, I. A. & Drozdov, A. P. Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. Preprint at https://arXiv.org/abs/1601.04479 (2016).

  13. Hazen, R. M., Mao, H. K., Finger, L. W. & Hemley, R. J. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys. Rev. B 36, 3944–3947 (1987).

    Article  ADS  Google Scholar 

  14. Akahama, Y. I. et al. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101(R) (2010).

    Article  ADS  Google Scholar 

  15. Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article  ADS  Google Scholar 

  16. Loubeyre, P., Occelli, F. & LeToullec, R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416, 613–617 (2002).

    Article  ADS  Google Scholar 

  17. Eremets, M. I., Troyan, I. A., Lerch, P. & Drozdov, A. Infrared study of hydrogen up to 310 GPa at room temperature. High. Press. Res. 33, 377–380 (2013).

    Article  ADS  Google Scholar 

  18. Lebègue, S. et al. Semimetallic dense hydrogen above 260 GPa. Proc. Natl Acad. Sci. USA 109, 9766–9769 (2012).

    Article  ADS  Google Scholar 

  19. Zha, C.-S., Liu, Z. & Hemley, R. J. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett. 108, 146402 (2012).

    Article  ADS  Google Scholar 

  20. Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Molecular semimetallic hydrogen. Preprint at https://arxiv.org/abs/1708.05217 (2017).

  21. Eremets, M. I. & Troyan, I. A. Conductive dense hydrogen. Nat. Mater. 10, 927–931 (2011).

    Article  ADS  Google Scholar 

  22. Brown, P., Semeniuk, K., Vasiljkovic, A. & MGrosche, F. Pressure-induced semimetal-to-semiconductor transition in bismuth. Phys. Procedia 75, 29–33 (2015).

    Article  ADS  Google Scholar 

  23. Shimizu, K. Superconducting elements under high pressure. Phys. C 552, 30–33 (2018).

    Article  ADS  Google Scholar 

  24. Eremets, M. I. et al. Electrical conductivity of Xe at megabar pressures. Phys. Rev. Lett. 85, 2797–2800 (2000).

    Article  ADS  Google Scholar 

  25. Koufos, A. P. & Papaconstantopoulos, D. A. Pressure-induced insulator to metal transition and superconductivity of the inert gases. J. Supercond. Nov. Magn. 28, 3525–3533 (2015).

    Article  Google Scholar 

  26. Ma, Y., Oganov, A. R. & Glass, C. W. Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε−ζ-phase transition: ab initio simulations. Phys. Rev. B 76, 064101 (2007).

    Article  ADS  Google Scholar 

  27. Goncharov, A. F., Gregoryanz, E., Hemley, R. J. & Mao, H. K. Molecular character of the metallic high-pressure phase of oxygen. Phys. Rev. B 68, 100102 (2003).

    Article  ADS  Google Scholar 

  28. Shimizu, K., Eremets, M. I., Suhara, K. & Amaya, K. Oxygen under high pressure – temperature dependence of electrical resistance. Rev. High. Press. Sci. Technol. 7, 784–786 (1998).

    Article  Google Scholar 

  29. Monserrat, B. et al. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett. 120, 255701 (2018).

    Article  ADS  Google Scholar 

  30. Drummond, N. D. et al. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures. Nat. Commun. 6, 7794 (2015).

    Article  ADS  Google Scholar 

  31. Cerdeira, F., Dreybrodt, W. & Cardona, M. Resonant Raman scattering in germanium. Solid State Commun. 10, 591–595 (1972).

    Article  ADS  Google Scholar 

  32. Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of solid hydrogen. Phys. Rev. B 94, 134101 (2016).

    Article  ADS  Google Scholar 

  33. Eremets, M. I. Megabar high-pressure cells for Raman measurements. J. Raman Spectrosc. 34, 515–518 (2003).

    Article  ADS  Google Scholar 

  34. Y. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. C 215, 012195 (2010).

    Google Scholar 

Download references

Acknowledgements

Support provided by the European Research Council under Advanced Grant 267777 is acknowledged. We acknowledge Th. Timusk, V. Kresin, L. Boeri, F. Balakirev, Sh. Mozaffari and D. Graf for helpful discussions and comments. M.I.E. is grateful to the Max Planck community for the invaluable support, and U. Pöschl for the constant encouragement.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work. M.I.E. designed the study and wrote the manuscript together with A.P.D.

Corresponding author

Correspondence to M. I. Eremets.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alexander Goncharov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremets, M.I., Drozdov, A.P., Kong, P.P. et al. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019). https://doi.org/10.1038/s41567-019-0646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0646-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing