Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

High-entropy materials for energy and electronic applications

Abstract

High-entropy materials (HEMs) hold promise for a variety of applications because their properties can be readily tailored by selecting specific elements and altering stoichiometry. In this Perspective, we highlight the emerging potential of HEMs in energy and electronic applications. We place particular emphasis on (ionic and covalent) ceramics that have only emerged in powder form since 2015. Although the discovery of opportunities is in its early stages, we discuss a few case studies in which the use of HEMs has led to improved material properties and device performance. We also correlate features with the respective properties and identify topics and effects for future investigations. An overview of these intrinsic properties, such as cocktail effects, lattice distortions and compositional freedom, as well as a list of general attributes, is given and linked to changes in material characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The transformation of binary materials (simple oxides) into a high-entropy material.
Fig. 2: Cocktail effects during the conversion reaction of the (CoCuMgNiZn)O anode.
Fig. 3: Different effects emerging from the high-entropy concept and how they affect energy storage and conversion applications.
Fig. 4: Different effects emerging from the high-entropy concept and how they affect electronic applications.

Similar content being viewed by others

References

  1. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  2. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  3. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  5. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  CAS  Google Scholar 

  6. Brahlek, M. et al. What is in a name: defining ‘high entropy’ oxides. Apl. Mater. 10, 110902 (2022).

    Article  CAS  Google Scholar 

  7. Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Aamlid, S. S., Oudah, M., Rottler, J. & Hallas, A. M. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article  CAS  Google Scholar 

  10. Spurling, R. J., Lass, E. A., Wang, X. & Page, K. Entropy-driven phase transitions in complex ceramic oxides. Phys. Rev. Mater. 6, 090301 (2022).

    Article  CAS  Google Scholar 

  11. Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).

    Article  CAS  Google Scholar 

  12. Körmann, F., Ikeda, Y., Grabowski, B. & Sluiter, M. H. F. Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 1–9 (2017).

    Article  Google Scholar 

  13. Chang, C.-C. et al. Lattice distortion or cocktail effect dominates the performance of tantalum-based high-entropy nitride coatings. Appl. Surf. Sci. 577, 151894 (2022).

    Article  CAS  Google Scholar 

  14. Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).

    Article  Google Scholar 

  15. Ning, Y. et al. Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceram. Int. 49, 12214–12223 (2023).

    Article  CAS  Google Scholar 

  16. Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

    Article  Google Scholar 

  17. Xiang, H. et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 10, 385–441 (2021).

    Article  CAS  Google Scholar 

  18. Wang, J. et al. P2-type layered high-entropy oxides as sodium-ion cathode materials. Mater. Futur. 1, 035104 (2022).

    Article  Google Scholar 

  19. Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. High‐entropy layered oxide cathodes for sodium‐ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

    Article  CAS  Google Scholar 

  21. Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13, 2826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding, F. et al. Using high-entropy configuration strategy to design na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).

    Article  Google Scholar 

  24. Amiri, A. & Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782–823 (2021).

    Article  CAS  Google Scholar 

  25. Lin, L. et al. High‐entropy sulfides as electrode materials for Li‐ion batteries. Adv. Energy Mater. 12, 2103090 (2022).

    Article  CAS  Google Scholar 

  26. Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cui, Y. et al. High entropy fluorides as conversion cathodes with tailorable electrochemical performance. J. Energy Chem. 72, 342–351 (2022).

    Article  CAS  Google Scholar 

  28. Petrovičovà, B. et al. High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries. Appl. Sci. 12, 5965 (2022).

    Article  Google Scholar 

  29. Triolo, C., Xu, W., Petrovičovà, B., Pinna, N. & Santangelo, S. Evaluation of entropy‐stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries. Adv. Funct. Mater. 32, 2202892 (2022).

    Article  CAS  Google Scholar 

  30. Wang, K. et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14, 1487 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).

    Article  CAS  Google Scholar 

  32. Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, Y. et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium‐ion batteries. Adv. Funct. Mater. 32, 2202372 (2022).

    Article  CAS  Google Scholar 

  34. Ma, Y. et al. High‐entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).

    Article  CAS  Google Scholar 

  35. Du, M. et al. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium–sulfur batteries. Angew. Chem. 134, e202209350 (2022).

    Article  Google Scholar 

  36. Xing, J., Zhang, Y., Jin, Y. & Jin, Q. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023).

    Article  CAS  Google Scholar 

  37. Varzi, A., Mattarozzi, L., Cattarin, S., Guerriero, P. & Passerini, S. 3D porous Cu–Zn alloys as alternative anode materials for Li-Ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018).

    Article  Google Scholar 

  38. Wei, Y. et al. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries. J. Alloy. Compd. 938, 168610 (2023).

    Article  CAS  Google Scholar 

  39. Osenciat, N. et al. Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity. J. Am. Ceram. Soc. 102, 6156–6162 (2019).

    Article  CAS  Google Scholar 

  40. Biesuz, M. et al. Ni-free high-entropy rock salt oxides with Li superionic conductivity. J. Mater. Chem. A 10, 23603–23616 (2022).

    Article  CAS  Google Scholar 

  41. Grzesik, Z. et al. Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide. J. Eur. Ceram. Soc. 39, 4292–4298 (2019).

    Article  CAS  Google Scholar 

  42. Zeng, Y. et al. High-entropy mechanism to boost ionic conductivity. Science 378, 1320–1324 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Stockham, M. P., Dong, B. & Slater, P. R. High entropy lithium garnets — testing the compositional flexibility of the lithium garnet system. J. Solid. State Chem. 308, 122944 (2022).

    Article  CAS  Google Scholar 

  44. Kuo, C.-H. et al. A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries. Apl. Mater. 10, 121104 (2022).

    Article  CAS  Google Scholar 

  45. Sastre, J. et al. Lithium garnet Li7La3Zr2O12 electrolyte for all‐solid‐state batteries: closing the gap between bulk and thin film Li‐ion conductivities. Adv. Mater. Interfaces 7, 2000425 (2020).

    Article  CAS  Google Scholar 

  46. Lin, J. et al. A high-entropy multicationic substituted lithium argyrodite superionic solid electrolyte. ACS Mater. Lett. 4, 2187–2194 (2022).

    Article  CAS  Google Scholar 

  47. Strauss, F. et al. High-entropy polyanionic lithium superionic conductors. ACS Mater. Lett. 4, 418–423 (2022).

    Article  CAS  Google Scholar 

  48. Moździerz, M. et al. Mixed ionic-electronic transport in the high-entropy (Co,Cu,Mg,Ni,Zn)1−xLixO oxides. Acta Mater. 208, 116735 (2021).

    Article  Google Scholar 

  49. Hsu, S.-H. et al. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 30, 1707261 (2018).

    Article  Google Scholar 

  50. Guan, J., Bai, X. & Tang, T. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 15, 818–837 (2022).

    Article  CAS  Google Scholar 

  51. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. et al. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small 14, 1704073 (2018).

    Article  Google Scholar 

  53. Koo, J. Y. et al. Suppression of cation segregation in (La,Sr)CoO3−δ by elastic energy minimization. ACS Appl. Mater. Interfaces 10, 8057–8065 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Fu, M., Ma, X., Zhao, K., Li, X. & Su, D. High-entropy materials for energy-related applications. iScience 24, 102177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, Y. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsai, C.-F., Wu, P.-W., Lin, P., Chao, C.-G. & Yeh, K.-Y. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation. Jpn. J. Appl. Phys. 47, 5755–5761 (2008).

    Article  CAS  Google Scholar 

  57. Tsai, C.-F., Yeh, K.-Y., Wu, P.-W., Hsieh, Y.-F. & Lin, P. Effect of platinum present in multi-element nanoparticles on methanol oxidation. J. Alloy. Compd. 478, 868–871 (2009).

    Article  CAS  Google Scholar 

  58. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Yao, Y. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ding, Z. et al. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020).

    Article  CAS  Google Scholar 

  62. Jin, Z. et al. Nanoporous Al‐Ni‐Co‐Ir‐Mo high‐entropy alloy for record‐high water splitting activity in acidic environments. Small 15, 1904180 (2019).

    Article  CAS  Google Scholar 

  63. Schweidler, S. et al. Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution. Front. Energy Res. 10, 983979 (2022).

    Article  Google Scholar 

  64. Wang, T., Chen, H., Yang, Z., Liang, J. & Dai, S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550–4554 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Stenzel, D. et al. High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst. Front. Energy Res. 10, 942314 (2022).

    Article  Google Scholar 

  66. Nguyen, T. X., Su, Y., Lin, C. & Ting, J. Self‐reconstruction of sulfate‐containing high entropy sulfide for exceptionally high‐performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31, 2106229 (2021).

    Article  CAS  Google Scholar 

  67. Sun, Z. et al. High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022).

    Article  CAS  Google Scholar 

  68. Zhai, S. et al. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172–2178 (2018).

    Article  CAS  Google Scholar 

  69. Qiu, H.-J. et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 1, 526–533 (2019).

    Article  CAS  Google Scholar 

  70. Einert, M. et al. Mesoporous high-entropy oxide thin films: electrocatalytic water oxidation on high-surface-area spinel (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4 electrodes. ACS Appl. Energy Mater. 5, 717–730 (2022).

    Article  CAS  Google Scholar 

  71. Nguyen, T. X., Liao, Y.-C., Lin, C.-C., Su, Y.-H. & Ting, J.-M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 31, 2101632 (2021).

    Article  CAS  Google Scholar 

  72. Duan, C. et al. Nanosized high entropy spinel oxide (FeCoNiCrMn)3O4 as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction. Sustain. Energy Fuels 6, 1479–1488 (2022).

    Article  CAS  Google Scholar 

  73. Dąbrowa, J. et al. Formation of solid solutions and physicochemical properties of the high-entropy Ln1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (Ln = La, Pr, Nd, Sm or Gd) perovskites. Materials 14, 5264 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Triolo, C. et al. Evaluation of electrospun spinel-type high-entropy (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)3O4, (Cr0.2Mn0.2Fe0.2Co0.2Zn0.2)3O4 and (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 oxide nanofibers as electrocatalysts for oxygen evolution in alkaline medium. Energy Adv. 2, 667–678 (2023).

    Article  CAS  Google Scholar 

  75. Li, X. et al. High entropy materials based electrocatalysts for water splitting: synthesis strategies, catalytic mechanisms, and prospects. Nano Res. https://doi.org/10.1007/s12274-022-5207-4 (2022).

  76. Zhang, G. et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018).

    Article  CAS  Google Scholar 

  77. Löffler, T. et al. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 4, 1206–1214 (2019).

    Article  Google Scholar 

  78. Li, J., Liu, Y., Chen, H., Zhang, Z. & Zou, X. Design of a multilayered oxygen‐evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 31, 2101820 (2021).

    Article  CAS  Google Scholar 

  79. Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    Article  CAS  Google Scholar 

  80. Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, 6624–6629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vos, J. G., Wezendonk, T. A., Jeremiasse, A. W. & Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 140, 10270–10281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennett, J. Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrog. Energy 5, 401–408 (1980).

    Article  CAS  Google Scholar 

  83. Arnold, S., Wang, L. & Presser, V. Dual‐use of seawater batteries for energy storage and water desalination. Small 18, 2107913 (2022).

    Article  CAS  Google Scholar 

  84. Hong, J., Cho, K.-H., Presser, V. & Su, X. Recent advances in wastewater treatment using semiconductor photocatalysts. Curr. Opin. Green Sustain. Chem. 36, 100644 (2022).

    Article  CAS  Google Scholar 

  85. Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    Article  CAS  Google Scholar 

  86. Wang, L., Zhang, Y., Moh, K. & Presser, V. From capacitive deionization to desalination batteries and desalination fuel cells. Curr. Opin. Electrochem. 29, 100758 (2021).

    Article  CAS  Google Scholar 

  87. Löffler, T., Ludwig, A., Rossmeisl, J. & Schuhmann, W. What makes high‐entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60, 26894–26903 (2021).

    Article  Google Scholar 

  88. Zhang, Y. et al. In situ coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale 13, 16164–16171 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Baiutti, F. et al. A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells. Nat. Commun. 12, 2660 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jin, Z. et al. Eight‐component nanoporous high‐entropy oxides with low Ru contents as high‐performance bifunctional catalysts in Zn–air batteries. Small 18, 2107207 (2022).

    Article  CAS  Google Scholar 

  91. Jin, Z. et al. A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low ΔE of 0.61 V for highly reversible Zn–air batteries. Chem. Sci. 13, 12056–12064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, T., Xu, H., Jin, Z., Zhang, Y. & Qiu, H.-J. Noble metal-free high-entropy oxide/Co–N–C bifunctional electrocatalyst enables highly reversible and durable Zn-air batteries. Appl. Surf. Sci. 610, 155624 (2023).

    Article  CAS  Google Scholar 

  93. Guo, R. & He, T. High-entropy perovskite electrolyte for protonic ceramic fuel cells operating below 600 °C. ACS Mater. Lett. 4, 1646–1652 (2022).

    Article  CAS  Google Scholar 

  94. Bersuker, G., Zeitzoff, P., Brown, G. & Huff, H. R. Dielectrics for future transistors. Mater. Today 7, 26–33 (2004).

    Article  CAS  Google Scholar 

  95. Kim, L., Jung, D., Kim, J., Kim, Y. S. & Lee, J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl. Phys. Lett. 82, 2118–2120 (2003).

    Article  CAS  Google Scholar 

  96. Sharma, Y. et al. High entropy oxide relaxor ferroelectrics. ACS Appl. Mater. Interfaces 14, 11962–11970 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, X. et al. Dielectric properties of novel high-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)Nb2O6−δ tungsten bronze ceramics. J. Mater. Sci. 57, 15901–15912 (2022).

    Article  CAS  Google Scholar 

  98. Zhou, J., Li, P., Zhang, X., Yan, J. & Qi, X. Effect of configurational entropy on dielectric properties of high-entropy perovskite oxides (Ce0.5,K0.5)x[(Bi0.5,Na0.5)0.25Ba0.25Sr0.25Ca0.25]1−xTiO3. J. Mater. Sci. Mater. Electron. 33, 20721–20730 (2022).

    Article  CAS  Google Scholar 

  99. Ning, Y. et al. Enhanced capacitive energy storage and dielectric temperature stability of A-site disordered high-entropy perovskite oxides. J. Mater. Sci. Technol. 145, 66–73 (2023).

    Article  CAS  Google Scholar 

  100. Zhou, S. et al. Dielectric temperature stability and energy storage performance of NBT‐based ceramics by introducing high‐entropy oxide. J. Am. Ceram. Soc. 105, 4796–4804 (2022).

    Article  CAS  Google Scholar 

  101. Li, H. et al. High-entropy oxides: advanced research on electrical properties. Coatings 11, 628 (2021).

    Article  CAS  Google Scholar 

  102. Talluri, B., Aparna, M. L., Sreenivasulu, N., Bhattacharya, S. S. & Thomas, T. High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material. J. Energy Storage 42, 103004 (2021).

    Article  Google Scholar 

  103. Xuan, Y., Lin, H. C., Ye, P. D. & Wilk, G. D. Capacitance-voltage studies on enhancement-mode InGaAs metal–oxide–semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric. Appl. Phys. Lett. 88, 263518 (2006).

    Article  Google Scholar 

  104. Feng, X., Marques, G. C., Rasheed, F., Tahoori, M. B. & Aghassi-Hagmann, J. Nonquasi-static capacitance modeling and characterization for printed inorganic electrolyte-gated transistors in logic gates. IEEE Trans. Electron. Devices 66, 5272–5277 (2019).

    Article  CAS  Google Scholar 

  105. Kim, S. H. et al. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, B. et al. High-entropy design for dielectric materials: status, challenges, and beyond. J. Appl. Phys. 133, 110904 (2023).

    Article  CAS  Google Scholar 

  107. Zhang, P. et al. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications. J. Mater. Sci. Technol. 97, 182–189 (2022).

    Article  CAS  Google Scholar 

  108. Ma, Z. et al. High thermoelectric performance and low lattice thermal conductivity in lattice-distorted high-entropy semiconductors AgMnSn1–xPbxSbTe4. Chem. Mater. 34, 8959–8967 (2022).

    Article  CAS  Google Scholar 

  109. Rost, C. M. et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. Acta Mater. 196, 231–239 (2020).

    Article  CAS  Google Scholar 

  110. Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Fan, L. et al. A novel MnCoNiCuZnO5 complex-phase ceramic for negative temperature coefficient thermistors. Mater. Sci. Semicond. Process. 142, 106489 (2022).

    Article  CAS  Google Scholar 

  112. Shi, Z. et al. A-site deficiency improved the thermoelectric performance of high-entropy perovskite manganite-based ceramics. J. Mater. Chem. C https://doi.org/10.1039/D2TC02952A (2022).

  113. Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Wright, A. J. et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides. Scr. Mater. 181, 76–81 (2020).

    Article  CAS  Google Scholar 

  116. Lim, M. et al. Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. J. Appl. Phys. 125, 055105 (2019).

    Article  Google Scholar 

  117. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. Chem. 165, 497–531 (1853).

    Article  Google Scholar 

  118. Zheng, Y. et al. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J. Adv. Ceram. 10, 377–384 (2021).

    Article  CAS  Google Scholar 

  119. Banerjee, R. et al. High-entropy perovskites: an emergent class of oxide thermoelectrics with ultralow thermal conductivity. ACS Sustain. Chem. Eng. 8, 17022–17032 (2020).

    Article  CAS  Google Scholar 

  120. Luo, Y. et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering. J. Am. Chem. Soc. 142, 15187–15198 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Deng, Z. et al. Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020).

    Article  CAS  Google Scholar 

  122. Mikuła, A. et al. Search for mid- and high-entropy transition-metal chalcogenides — investigating the pentlandite structure. Dalton Trans. 50, 9560–9573 (2021).

    Article  PubMed  Google Scholar 

  123. Krawczyk, P. A. et al. High-entropy perovskites as multifunctional metal oxide semiconductors: synthesis and characterization of (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3. ACS Appl. Electron. Mater. 2, 3211–3220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liang, Y., Luo, B., Dong, H. & Wang, D. Electronic structure and transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films. Ceram. Int. 47, 20196–20200 (2021).

    Article  CAS  Google Scholar 

  125. Usharani, N. J., Sanghavi, H. & Bhattacharya, S. S. Factors influencing phase formation and band gap studies of a novel multicomponent high entropy (Co,Cu,Mg,Ni,Zn)2TiO4 orthotitanate spinel. J. Alloy. Compd. 888, 161390 (2021).

    Article  CAS  Google Scholar 

  126. Mazza, A. R. et al. Searching for superconductivity in high entropy oxide Ruddlesden–Popper cuprate films. J. Vac. Sci. Technol. A 40, 013404 (2022).

    Article  CAS  Google Scholar 

  127. Sarkar, A., Kruk, R. & Hahn, H. Magnetic properties of high entropy oxides. Dalton Trans. 50, 1973–1982 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, J. et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31, 3705–3711 (2019).

    Article  CAS  Google Scholar 

  129. Su, L. et al. Direct observation of elemental fluctuation and oxygen octahedral distortion-dependent charge distribution in high entropy oxides. Nat. Commun. 13, 2358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Witte, R. et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 034406 (2019).

    Article  CAS  Google Scholar 

  131. Sarkar, A. et al. Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: unraveling the suppression of configuration entropy in high entropy oxides. Acta Mater. 226, 117581 (2022).

    Article  CAS  Google Scholar 

  132. Jimenez-Segura, M. P. et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides. Appl. Phys. Lett. 114, 122401 (2019).

    Article  Google Scholar 

  133. Sarkar, A. et al. High entropy approach to engineer strongly correlated functionalities in manganites. Adv. Mater. https://doi.org/10.1002/adma.202207436 (2022).

  134. Sharma, Y. et al. Magnetic texture in insulating single crystal high entropy oxide spinel films. ACS Appl. Mater. Interfaces 13, 17971–17977 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Johnstone, G. H. J. et al. Entropy engineering and tunable magnetic order in the spinel high-entropy oxide. J. Am. Chem. Soc. 144, 20590–20600 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Vinnik, D. A. et al. High-entropy oxide phases with magnetoplumbite structure. Ceram. Int. 45, 12942–12948 (2019).

    Article  CAS  Google Scholar 

  137. Mazza, A. R. et al. Designing magnetism in high entropy oxides. Adv. Sci. 9, 2200391 (2022).

    Article  CAS  Google Scholar 

  138. Musicó, B. et al. Tunable magnetic ordering through cation selection in entropic spinel oxides. Phys. Rev. Mater. 3, 104416 (2019).

    Article  Google Scholar 

  139. Mazza, A. R. et al. Charge doping effects on magnetic properties of single-crystal La1−xSrx(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 (0 ≤ x ≤ 0.5) high-entropy perovskite oxides. Phys. Rev. B 104, 094204 (2021).

    Article  CAS  Google Scholar 

  140. Sharma, Y. et al. Magnetic anisotropy in single-crystal high-entropy perovskite oxide La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films. Phys. Rev. Mater. 4, 014404 (2020).

    Article  CAS  Google Scholar 

  141. Zhao, S. Role of chemical disorder and local ordering on defect evolution in high-entropy alloys. Phys. Rev. Mater. 5, 103604 (2021).

    Article  CAS  Google Scholar 

  142. Lin-Vines, A. X. et al. Defect behaviour in the MoNbTaVW high entropy alloy (HEA). Results Mater. 15, 100320 (2022).

    Article  CAS  Google Scholar 

  143. Pickering, E. J. et al. High-entropy alloys for advanced nuclear applications. Entropy 23, 98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aksoy, D. et al. Chemical order transitions within extended interfacial segregation zones in NbMoTaW. J. Appl. Phys. 132, 235302 (2022).

    Article  CAS  Google Scholar 

  145. McCarthy, M. J. et al. Emergence of near-boundary segregation zones in face-centered cubic multiprincipal element alloys. Phys. Rev. Mater. 5, 113601 (2021).

    Article  CAS  Google Scholar 

  146. Shu, Y., Bao, J., Yang, S., Duan, X. & Zhang, P. Entropy-stabilized metal-CeOx solid solutions for catalytic combustion of volatile organic compounds. AIChE J. 67, e17046 (2021).

    Article  CAS  Google Scholar 

  147. Feng, D. et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem. Int. Ed. 59, 19503–19509 (2020).

    Article  CAS  Google Scholar 

  148. Wang, Q., Velasco, L., Breitung, B. & Presser, V. High‐entropy energy materials in the age of big data: a critical guide to next‐generation synthesis and applications. Adv. Energy Mater. 11, 2102355 (2021).

    Article  CAS  Google Scholar 

  149. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50, 32–48 (2015).

    Article  CAS  Google Scholar 

  150. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Chang, Y. A. et al. Phase diagram calculation: past, present and future. Prog. Mater. Sci. 49, 313–345 (2004).

    Article  CAS  Google Scholar 

  152. Chou, K.-C. & Austin Chang, Y. A study of ternary geometrical models. Ber. Bunsenges. Phys. Chem. 93, 735–741 (1989).

    Article  CAS  Google Scholar 

  153. Velasco, L. et al. Phase–property diagrams for multicomponent oxide systems toward materials libraries. Adv. Mater. 33, 2102301 (2021).

    Article  CAS  Google Scholar 

  154. Kante, M. V. et al. A high-entropy oxide as high-activity electrocatalyst for water oxidation. ACS Nano 17, 5329–5339 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Banko, L. et al. Unravelling composition–activity–stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling. Adv. Energy Mater. 12, 2103312 (2022).

    Article  CAS  Google Scholar 

  156. Ludwig, A., Zarnetta, R., Hamann, S., Savan, A. & Thienhaus, S. Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99, 1144–1149 (2008).

    Article  CAS  Google Scholar 

  157. Li, Z., Ludwig, A., Savan, A., Springer, H. & Raabe, D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33, 3156–3169 (2018).

    Article  CAS  Google Scholar 

  158. Ludwig, A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Comput. Mater. 5, 70 (2019).

    Article  Google Scholar 

  159. Jia, S., Counsell, J., Adamič, M., Jonderian, A. & McCalla, E. High-throughput design of Na–Fe–Mn–O cathodes for Na-ion batteries. J. Mater. Chem. A 10, 251–265 (2021).

    Article  Google Scholar 

  160. Potts, K. P., Grignon, E. & McCalla, E. Accelerated screening of high-energy lithium-ion battery cathodes. ACS Appl. Energy Mater. 2, 8388–8393 (2019).

    Article  CAS  Google Scholar 

  161. Kumbhakar, M. et al. High-throughput screening of high-entropy fluorite-type oxides as potential candidates for photovoltaic applications. Adv. Energy Mater. 13, 2204337 (2023).

    Article  CAS  Google Scholar 

  162. Schweidler, S. et al. Synthesis and characterization of high-entropy CrMoNbTaVW thin films using high-throughput methods. Adv. Eng. Mater. 25, 2200870 (2023).

    Article  CAS  Google Scholar 

  163. Anasori, B. & Gogotsi, Y. MXenes: trends, growth, and future directions. Graphene 2D Mater. 7, 75–79 (2022).

    Article  Google Scholar 

  164. Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Usharani, N. J., Shringi, R., Sanghavi, H., Subramanian, S. & Bhattacharya, S. S. Role of size, alio-/multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co,Cu,Mg,Na,Ni,Zn)O. Dalton Trans. 49, 7123–7132 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Fultz, B. Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247–352 (2010).

    Article  CAS  Google Scholar 

  167. Oh, H. S. et al. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is acknowledged by H.H. (HA 1344/45-1), by H.H. and A.S. (HA 1344/43-2), and by L.V. (LV 1111/1-1). L.V., M.B. and H.H. are grateful for the support provided by the DFG (424789449 and SE 1407/4-2). S.S., M.B. and H.H. acknowledge the European Union’s Horizon 2020 project EPISTORE with grant agreement no. 101017709. F.S. acknowledges the Federal Ministry of Education and Research (BMBF) for funding within the project MELLi (03XP0447). B.B. thanks the Carl Zeiss Foundation for funding of the KeraSolar project. J.A.-H. acknowledges funding by the DFG under Germany’s Excellence Strategy via the Excellence Cluster “3D Matter Made to Order” (EXC-2082/1-390761711). The authors acknowledge the use of ChatGPT for language corrections.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the article. T.B. and B.B. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Horst Hahn, Jasmin Aghassi-Hagmann, Torsten Brezesinski or Ben Breitung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks William Fahrenholtz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweidler, S., Botros, M., Strauss, F. et al. High-entropy materials for energy and electronic applications. Nat Rev Mater 9, 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00654-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing