Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete miscibility of immiscible elements at the nanometre scale

Subjects

Abstract

Understanding the mixing behaviour of elements in a multielement material is important to control its structure and property. When the size of a multielement material is decreased to the nanoscale, the miscibility of elements in the nanomaterial often changes from its bulk counterpart. However, there is a lack of comprehensive and quantitative experimental insight into this process. Here we explored how the miscibility of Au and Rh evolves in nanoparticles of sizes varying from 4 to 1 nm and composition changing from 15% Au to 85% Au. We found that the two immiscible elements exhibit a phase-separation-to-alloy transition in nanoparticles with decreased size and become completely miscible in sub-2 nm particles across the entire compositional range. Quantitative electron microscopy analysis and theoretical calculations were used to show that the observed immiscibility-to-miscibility transition is dictated by particle size, composition and possible surface adsorbates present under the synthesis conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the size-dependent miscibility relationship between Au and Rh.
Fig. 2: Closing the miscibility gap between Au and Rh at the nano- and cluster length scales.
Fig. 3: Effect of particle size and composition on the phase separation behaviour between Au and Rh.
Fig. 4: Experimental Au–Rh phase diagram at the nano- and cluster length scales and its comparison with the bulk miscibility gap between Au–Rh.
Fig. 5: Theoretical phase diagrams of the thermodynamic configurations of Au–Rh nanoparticles.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information, and are available from the corresponding author on reasonable request.

Code availability

The source codes of the algorithm for the HAADF-STEM image analysis are available via Zenodo at https://doi.org/10.5281/zenodo.10510952.

References

  1. Xie, C. L. et al. Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Lewis, R. J. et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 376, 615–620 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yang, T. et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 369, 427–432 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Shi, P. J. et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 373, 912–918 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. He, Q. F. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Oh, N. R. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ibrar, M. & Skrabalak, S. E. Designer plasmonic nanostructures for unclonable anticounterfeit tags. Small Struct. 2, 2100043 (2021).

    Article  Google Scholar 

  8. Jiang, B. B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jiang, B. B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Pendharkar, M. et al. Parity-preserving and magnetic field-resilient superconductivity in InSb nanowires with Sn shells. Science 372, 508–511 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Okamoto, H., Schlesinger, M. E. & Mueller, E. M. (eds) Binary Alloy Phase Diagrams (ASM International, 2016).

  12. Loffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  Google Scholar 

  13. Kusada, K. et al. Nonequilibrium flow-synthesis of solid-solution alloy nanoparticles: from immiscible binary to high-entropy alloys. J. Phys. Chem. C 125, 458–463 (2021).

    Article  CAS  Google Scholar 

  14. Chen, Y. F. et al. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 6, 231–237 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, C. Y. et al. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 17, 5526–5532 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  16. Chen, P. C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Chen, P. C. et al. Interface and heterostructure design in polyelemental nanoparticles. Science 363, 959–964 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Chen, P. C. et al. Chain-end functionalized polymers for the controlled synthesis of sub-2 nm particles. J. Am. Chem. Soc. 142, 7350–7355 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Piccolo, L. et al. Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Sci. Rep. 6, 35226 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, P.-C. et al. Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 10116–10125 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

    Article  ADS  Google Scholar 

  24. Yang, C. L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Feng, G. et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Buendia, F., Vargas, J. A., Johnston, R. L. & Beltran, M. R. Study of the stability of small AuRh clusters found by a genetic algorithm methodology. Comput. Theor. Chem. 1119, 51–58 (2017).

    Article  CAS  Google Scholar 

  27. Rahm, J. M. & Erhart, P. Understanding chemical ordering in bimetallic nanoparticles from atomic-scale simulations: the competition between bulk, surface, and strain. J. Phys. Chem. C 122, 28439–28445 (2018).

    Article  CAS  Google Scholar 

  28. Christensen, A., Stoltze, P. & Norskov, J. K. Size dependence of phase-separation in small bimetallic clusters. J. Phys. Condens. Matter 7, 1047–1057 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Fevre, M., Le Bouar, Y. & Finel, A. Thermodynamics of phase-separating nanoalloys: single particles and particle assemblies. Phys. Rev. B 97, 195404 (2018).

    Article  ADS  CAS  Google Scholar 

  30. Srivastava, C., Chithra, S., Malviya, K. D., Sinha, S. K. & Chattopadhyay, K. Size dependent microstructure for Ag-Ni nanoparticles. Acta Mater. 59, 6501–6509 (2011).

    Article  ADS  CAS  Google Scholar 

  31. Kusada, K., Yamauchi, M., Kobayashi, H., Kitagawa, H. & Kubota, Y. Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J. Am. Chem. Soc. 132, 15896–15898 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Q. et al. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 9, 510 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, H., Wang, L., Lu, L. & Toshima, N. Preparation and catalytic activity for aerobic glucose oxidation of crown jewel structured Pt/Au bimetallic nanoclusters. Sci. Rep. 6, 30752 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Toshima, N. & Hirakawa, K. Polymer-protected bimetallic nanocluster catalysts having core/shell structure for accelerated electron transfer in visible-light-induced hydrogen generation. Polym. J. 31, 1127–1132 (1999).

    Article  CAS  Google Scholar 

  35. Toshima, N. & Yonezawa, T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998).

    Article  CAS  Google Scholar 

  36. Meischein, M. et al. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids. Nanoscale Adv. 4, 3855–3869 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajeeva, B. B. et al. Accumulation-driven unified spatiotemporal synthesis and structuring of immiscible metallic nanoalloys. Matter 1, 1606–1617 (2019).

    Article  Google Scholar 

  38. Feng, J. C. et al. Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter 3, 1646–1663 (2020).

    Article  Google Scholar 

  39. Qi, W. H. & Wang, M. P. Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 21, 1743–1745 (2002).

    Article  CAS  Google Scholar 

  40. Xiong, S. Y., Qi, W. H., Huang, B. Y. & Wang, M. P. Size-, shape- and composition-dependent alloying ability of bimetallic nanoparticles. ChemPhysChem 12, 1317–1324 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Qi, W. H., Huang, B. Y. & Wang, M. P. Size and shape-dependent formation enthalpy of binary alloy nanoparticles. Phys. B 404, 1761–1765 (2009).

    Article  ADS  CAS  Google Scholar 

  42. Sneed, B. T., Young, A. P. & Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–12265 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ferrando, R. Structure and Properties of Nanoalloys (Elsevier, 2016).

  44. Chen, P. C. et al. Revealing the phase separation behavior of thermodynamically immiscible elements in a nanoparticle. Nano Lett. 21, 6684–6689 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Sohlberg, K., Pennycook, T. J., Zhou, W. & Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 17, 3982–4006 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Vanzan, M., Jones, R. M., Corni, S., D’Agosta, R. & Baletto, F. Exploring AuRh nanoalloys: a computational perspective on the formation and physical properties. ChemPhysChem 23, e202200035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valizadeh, Z. & Abbaspour, M. Surface energy, relative stability, and structural properties of Au-Pt, Au-Rh, Au-Cu, and Au-Pd nanoclusters created in inert-gas condensation process using MD simulation. J. Phys. Chem. Solids 144, 109480 (2020).

    Article  CAS  Google Scholar 

  48. Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis, Arizona State Univ. (2002).

  49. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division, US Department of Energy (DOE), under Contract DE-AC02-05CH11231, FWP CH030201 (Catalysis Research Program). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, US DOE, under contract no. DE-AC02-05CH11231. This work made use of the TEM facilities at the Cornell Center for Materials Research (CCMR), which are supported through the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program (DMR-1719875). P.-C.C. acknowledges support from Kavli ENSI Heising-Simons Fellowship. J.J. acknowledges fellowship support from Suzhou Industrial Park. Y.Y. acknowledges support from Miller Fellowship. C.A.M. acknowledges the National Defense Science and Engineering Graduate (NDSEG) fellowship and the Kavli ENSI Graduate Student Fellowship for financial support. This research used resources of the National Energy Research Scientific Computing Center, a US DOE Office of Science User Facility supported by the Office of Science of the US DOE under contract no. DE-AC02-05CH11231 using NERSC award BES-ERCAP0024004.

Author information

Authors and Affiliations

Authors

Contributions

P.-C.C. and P.Y. conceived the ideas and designed the experiments. P.-C.C. performed the nanoparticle synthesis and conducted the electron microscopy characterization. M.G. designed the quantitative analysis algorithm. P.-C.C. and M.G. analysed the electron microscopy characterization data and performed the STEM image simulation. C.A.M. and K.A.P. performed the DFT calculations and theoretical analysis. C.S., J.J., Y.Y. and A.L.M. discussed the experimental results. P.-C.C., M.G. and P.Y. wrote the manuscript with editorial input from the other authors. P.Y. supervised the project.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Hiroshi Kitagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PC., Gao, M., McCandler, C.A. et al. Complete miscibility of immiscible elements at the nanometre scale. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01626-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing