Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles

Abstract

High-entropy alloys (HEAs) consisting of five or more elements have gained considerable attention due to their distinctive properties. However, synthesizing monodisperse HEA nanoparticles (NPs) is challenging through colloidal chemistry due to differences in the reduction rates of metal precursors and poor understanding of reaction intermediates. Here we propose a general approach to HEA NPs through an NP conversion pathway, where two-phase core–shell NPs are predictably synthesized via colloidal chemistry and then converted into single-phase HEA NPs by thermal annealing. This study establishes the necessary synthesis principles for the precursor core–shell NPs by considering the relative redox potentials of metal or metal precursors and the inherent lattice properties of the selected metals. Once monodisperse core–shell NPs were synthesized, they were converted into single-phase HEA NPs (constituent metals studied include Pd, Cu, Pt, Ni, Co, Au, Ag and Sn) by a simple annealing procedure that is suitable for different NP supports. We demonstrate the ability to manipulate the degree of intermixing between the core and shell phases and the generality of this NP conversion strategy to monodisperse HEA NPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the nanoparticle (NP) conversion process to synthesize high entropy alloy (HEA) NPs.
Fig. 2: Characterization of Au-containing NPs.
Fig. 3: Characterization of NPs from redox potential (Ered) reactivity study.
Fig. 4: Characterization of Sn-containing NPs.
Fig. 5: Morphological and compositional characterization of monodisperse HEA NPs.

Similar content being viewed by others

Data availability

The data that substantiate the study’s findings and contribute to the assessment of the paper’s conclusions can be accessed within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  ADS  Google Scholar 

  2. Zhou, M., Li, C. & Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  4. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  5. Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

    Article  ADS  Google Scholar 

  6. Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Banko, L. et al. Unravelling composition–activity–stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling. Adv. Energy Mater. 12, 2103312 (2022).

    Article  CAS  Google Scholar 

  8. Bueno, S. L. A. et al. Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity. ACS Nano 16, 18873–18885 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y. et al. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 6, 231–237 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Feng, G. et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Dey, G. R., McCormick, C. R., Soliman, S. S., Darling, A. J. & Schaak, R. E. Chemical insights into the formation of colloidal high entropy alloy nanoparticles. ACS Nano 17, 5943–5955 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Li, H. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11, 5437 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Silva, C. M. D. et al. Colloidal synthesis of nanoparticles: from bimetallic to high entropy alloys. Nanoscale 14, 9832–9841 (2022).

    Article  Google Scholar 

  17. Broge, N. L. N., Bertelsen, A. D., Søndergaard-Pedersen, F. & Iversen, B. B. Facile solvothermal synthesis of Pt–Ir–Pd–Rh–Ru–Cu–Ni–Co high-entropy alloy nanoparticles. Chem. Mater. 35, 144–153 (2023).

    Article  CAS  Google Scholar 

  18. Ortiz, N. & Skrabalak, S. E. On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir 30, 6649–6659 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Gilroy, K. D., Ruditskiy, A., Peng, H.-C., Qin, D. & Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414–10472 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Loiudice, A. & Buonsanti, R. Reaction intermediates in the synthesis of colloidal nanocrystals. Nat. Synth. 1, 344–351 (2022).

    Article  ADS  Google Scholar 

  21. De Roo, J. Chemical considerations for colloidal nanocrystal synthesis. Chem. Mater. 34, 5766–5779 (2022).

    Article  Google Scholar 

  22. Muzzio, M. et al. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale 11, 18946–18967 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. McCormick, C. R., Katzbaer, R. R., Steimle, B. C. & Schaak, R. E. Combinatorial cation exchange for the discovery and rational synthesis of heterostructured nanorods. Nat. Synth. 2, 152–161 (2023).

    Article  ADS  Google Scholar 

  24. Vasquez, Y., Henkes, A. E., Chris Bauer, J. & Schaak, R. E. Nanocrystal conversion chemistry: a unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 181, 1509–1523 (2008).

    Article  CAS  ADS  Google Scholar 

  25. Xia, X., Wang, Y., Ruditskiy, A. & Xia, Y. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Gamler, J. T. L. et al. Achieving highly durable random alloy nanocatalysts through intermetallic cores. ACS Nano 13, 4008–4017 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. DeSantis, C. J., Sue, A. C., Bower, M. M. & Skrabalak, S. E. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures. ACS Nano 6, 2617–2628 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lide, D. R. CRC Handbook of Chemistry and Physics, 89th ed. (CRC Press, Taylor & Francis: Boca Raton, FL, 2008).

  29. Kar, N. et al. Reaction stoichiometry directs the architecture of trimetallic nanostructures produced via galvanic replacement. Nanoscale 15, 3749–3756 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Ashberry, H. M., Gamler, J. T. L., Unocic, R. R. & Skrabalak, S. E. Disorder-to-order transition mediated by size refocusing: a route toward monodisperse intermetallic nanoparticles. Nano Lett. 19, 6418–6423 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Vegard, L. & Dale, H. VIII. Untersuchungen über Mischkristalle und Legierungen. Z. Krist. Cryst. Mater 67, 148–162 (1928).

    Article  CAS  Google Scholar 

  32. Sun, D. et al. Monodisperse AgPd alloy nanoparticles as a highly active catalyst towards the methanolysis of ammonia borane for hydrogen generation. RSC Adv. 6, 105940–105947 (2016).

    Article  CAS  ADS  Google Scholar 

  33. Sun, D., Mazumder, V., Metin, Ö. & Sun, S. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano 5, 6458–6464 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. mp-1022725: Sn (Cubic, Fm-3m, 225). The Materials Project https://materialsproject.org/materials/mp-1022725?chemsys=Sn#literature_references (2023)

  35. Almeida, T. S., Van Wassen, A. R., VanDover, R. B., de Andrade, A. R. & Abruña, H. D. Combinatorial PtSnM (M = Fe, Ni, Ru and Pd) nanoparticle catalyst library toward ethanol electrooxidation. J. Power Sources 284, 623–630 (2015).

    Article  CAS  ADS  Google Scholar 

  36. Rizo, R. et al. Pt-Richcore/Sn-Richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 140, 3791–3797 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, X., Yang, Q. & Quan, Z. Tin-based nanomaterials: colloidal synthesis and battery applications. Chem. Commun. 55, 8683–8694 (2019).

    Article  CAS  Google Scholar 

  38. Kravchyk, K. et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135, 4199–4202 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bueno, S. L. A., Zhan, X., Wolfe, J., Chatterjee, K. & Skrabalak, S. E. Phase-controlled synthesis of Pd–Sn nanocrystal catalysts of defined size and shape. ACS Appl. Mater. Interfaces 13, 51876–51885 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Ashberry, H. M., Zhan, X. & Skrabalak, S. E. Identification of nanoscale processes associated with the disorder-to-order transformation of carbon-supported alloy nanoparticles. ACS Mater. Au 2, 143–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Harak, E. W., Koczkur, K. M., Harak, D. W., Patton, P. & Skrabalak, S. E. Designing efficient catalysts through bimetallic architecture: Rh@Pt nanocubes as a case study. ChemNanoMat 3, 815–821 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.E.S., N.K., M.M., I.H.S., J.W. and S.L.A.B. acknowledge financial support from Indiana University and the US National Science Foundation (NSF CHE 2203349 received by S.E.S.). The authors acknowledge support from Indiana University’s Electron Microscopy Center, XPS facility (access to XPS at the Nanoscale Characterization Facility was provided by the NSF Award DMR MRI-1126394 received by S.E.S.), and Nanoscale Characterization Facility for access to instrumentation. They also thank X. Zhan, E. Verma and Y. Losovyj for their helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

N.K. and S.E.S. were responsible for the project concept and design of experiments. N.K. developed the synthesis of bimetallic and core–shell NPs and characterizations. M.M. and J.W. helped in synthesis of AuCu and Pd3Sn core–shell NP synthesis, respectively. I.H.S. contributed in temperature-dependent experiments. S.L.A.B. contributed some STEM–EDS characterization as well as some control experiments. This manuscript was written through the contributions of all authors. All authors have given approval to the final version of this manuscript.

Corresponding author

Correspondence to Sara E. Skrabalak.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Peer review

Peer review information

Nature Synthesis thanks Zhiming Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, discussion, Table 1, Notes 1 and 2, and references.

Source data

Source Data Fig. 2

Unprocessed data of STEM–EDS linescan and SEM–EDS spectra.

Source Data Fig. 3

Unprocessed data of STEM–EDS linescan and SEM–EDS spectra.

Source Data Fig. 4

Unprocessed data of STEM–EDS linescan and SEM–EDS spectra.

Source Data Fig. 5

Unprocessed data of STEM–EDS linescan, XRD pattern and individual XPS spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, N., McCoy, M., Wolfe, J. et al. Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles. Nat. Synth 3, 175–184 (2024). https://doi.org/10.1038/s44160-023-00409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00409-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing