Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry

Abstract

All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Free-space routing of upconverted light by a dielectric metasurface.
Fig. 2: Upconversion and routing with a nonlinear metasurface.
Fig. 3: Numerical optimization of interferometric routing.
Fig. 4: Polarization-controlled routing.

Similar content being viewed by others

Data availability

All data that support the findings of the study are provided in this Article and its Supplementary Information. Raw data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Yuen, H. P. & Chan, V. W. S. Noise in homodyne and heterodyne detection. Opt. Lett. 8, 177–179 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Massonnet, D. et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993).

    Article  ADS  Google Scholar 

  3. Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091–4094 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Spollard, J. T., Roberts, L. E., Sambridge, C. S., McKenzie, K. & Shaddock, D. A. Mitigation of phase noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave LiDAR. Opt. Express 29, 9060–9083 (2021).

    Article  ADS  PubMed  Google Scholar 

  5. Lin, V. S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J. & Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Allsop, T., Reeves, R., Webb, D. J., Bennion, I. & Neal, R. A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer. Rev. Sci. Instrum. 73, 1702–1705 (2002).

    Article  ADS  CAS  Google Scholar 

  7. Lee, B. H. et al. Interferometric fiber optic sensors. Sensors 12, 2467–2486 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article  Google Scholar 

  9. Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95–98 (2011).

    Article  ADS  CAS  Google Scholar 

  10. Gao, Y., Goodman, A. J., Shen, P.-C., Kong, J. & Tisdale, W. A. Phase-modulated degenerate parametric amplification microscopy. Nano Lett. 18, 5001–5006 (2018).

    Article  PubMed  Google Scholar 

  11. Rivard, M. et al. Imaging the bipolarity of myosin filaments with interferometric second harmonic generation microscopy. Biomed. Opt. Express 4, 2078–2086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crespi, A. et al. Three-dimensional Mach–Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10, 1167–1173 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Burla, M. et al. 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. APL Photonics 4, 056106 (2019).

    Article  ADS  Google Scholar 

  16. Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Almeida, V., Barrios, C., Panepucci, R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010).

    Article  ADS  CAS  Google Scholar 

  19. Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Gigli, C., Li, Q., Chavel, P., Leo, G., Brongersma, M. L. & Lalanne, P. Fundamental limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev. 15, 20000448 (2021).

    Article  ADS  Google Scholar 

  21. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  ADS  Google Scholar 

  22. Neshev, D. & Aharonovich, I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7, 58 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Article  CAS  Google Scholar 

  25. Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 127, 230901 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Vabishchevich, P. & Kivshar, Y. Nonlinear photonics with metasurfaces. Photon. Res. 11, B50–B64 (2023).

    Article  Google Scholar 

  27. Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018).

    Article  Google Scholar 

  29. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Grinblat, G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics 8, 3406–3432 (2021).

    Article  CAS  Google Scholar 

  31. Fedotova, A. et al. Lithium niobate meta-optics. ACS Photonics 9, 3745–3763 (2022).

    Article  CAS  Google Scholar 

  32. Camacho-Morales, R. et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics 3, 036002 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Zheng, Z. et al. Third-harmonic generation and imaging with resonant Si membrane metasurface. Opto-Electron Adv. 6, 220174 (2023).

    Article  ADS  CAS  Google Scholar 

  34. Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D. M. & Ellenbogen, T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1778 (2017).

    Article  ADS  Google Scholar 

  35. Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Salamin, Y. et al. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 10, 5550 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santiago-Cruz, T. et al. Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Mesch, M., Metzger, B., Hentschel, M. & Giessen, H. Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ghirardini, L. et al. Plasmon-enhanced second harmonic sensing. J. Phys. Chem. C 122, 11475–11481 (2018).

    Article  CAS  Google Scholar 

  41. Gao, Y. et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett. 18, 8054–8061 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Gigli, C. et al. Tensorial phase control in nonlinear meta-optics. Optica 8, 269–276 (2021).

    Article  ADS  Google Scholar 

  43. Reineke, B. et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett. 19, 6585–6591 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Yang, J., Gurung, S., Bej, S., Ni, P. & Lee, H. W. H. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 85, 036101 (2022).

    Article  ADS  Google Scholar 

  46. Benea-Chelmus, I. C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Dhama, R. et al. All-optical switching based on plasmon-induced enhancement of index of refraction. Nat. Commun. 13, 3114 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grinblat, G. et al. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation. Sci. Adv. 6, eabb3123 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pogna, E. A. A. et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano 15, 11150–11157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shan, J. Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Klimmer, S. et al. All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat. Photon. 15, 837–842 (2021).

    Article  ADS  CAS  Google Scholar 

  54. Zilli, A. et al. Frequency tripling via sum-frequency generation at the nanoscale. ACS Photonics 8, 1175–1182 (2021).

    Article  CAS  Google Scholar 

  55. Gili, V. F. et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express 24, 15965–15971 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Di Francescantonio, A. et al. Coherent control of the nonlinear emission of single plasmonic nanoantennas by dual-beam pumping. Adv. Opt. Mater. 10, 2200757 (2022).

    Article  Google Scholar 

  57. Liu, Z. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Vogwell, J., Rego, L., Smirnova, O. & Ayuso, D. Ultrafast control over chiral sum-frequency generation. Sci. Adv. 9, eadj1429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Høgstedt, L., Fix, A., Wirth, M., Pedersen, C. & Tidemand-Lichtenberg, P. Upconversion-based LiDAR measurements of atmospheric CO2. Opt. Express 24, 5152–5161 (2016).

    Article  ADS  PubMed  Google Scholar 

  60. Yazdanfar, S., Laiho, L. H. & So, P. T. C. Interferometric second harmonic generation microscopy. Opt. Express 12, 2739–2745 (2004).

    Article  ADS  PubMed  Google Scholar 

  61. Gehrsitz, S. et al. The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87, 7825–7837 (2000).

    Article  ADS  CAS  Google Scholar 

  62. Papatryfonos, K. et al. Refractive indices of MBE-grown AlxGa(1–x)As ternary alloys in the transparent wavelength region. AIP Adv. 11, 025327 (2021).

    Article  ADS  CAS  Google Scholar 

  63. Wang, Y., Zilli, A., Sztranyovszky, Z., Langbein, W. & Borri, P. Quantitative optical microspectroscopy, electron microscopy, and modelling of individual silver nanocubes reveal surface compositional changes at the nanoscale. Nanoscale Adv. 2, 2485–2496 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, J., Hugonin, J.-P. & Lalanne, P. Near-to-far field transformations for radiative and guided waves. ACS Photonics 3, 395–402 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.Z., D.R. M.C., M.F., G.L. and C.D.A. acknowledge financial support from the European Union’s Horizon 2020 research and innovation programme through the project ‘METAFAST’ (grant agreement no. 899673). A.Z., D.R., M.C., M.F. and C.D.A. acknowledge the Italian Ministry of University and Research through the PRIN project NOMEN (id: 2017MP7F8F). G.L acknowledges the French Agence Nationale de la Recherche, project NANOPAIR (ANR-18-CE92-0043). M.C. would like to thank B. Celebrano for insightful discussions and invaluable mentoring.

Author information

Authors and Affiliations

Authors

Contributions

M.C., M.F. and C.D.A. conceived the experiment. A.D.F., A.Z. and F.C. performed the experiments and analysed the data. D.R., A.D.F., A.Z. and P.B. performed the numerical simulations. L.C., A.L. and G.L. realized the metasurface. L.D., C.D.A., M.C. and M.F. supervised the project. A.D.F., M.F. and M.C. wrote the original draft.

Corresponding authors

Correspondence to Marco Finazzi or Michele Celebrano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Thomas Zentgraf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and text.

Supplementary Video 1

BFP images of upconverted light emitted by the metasurfaces acquired at a time delay of 660 as between the pump pulse.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Francescantonio, A., Zilli, A., Rocco, D. et al. All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry. Nat. Nanotechnol. 19, 298–305 (2024). https://doi.org/10.1038/s41565-023-01549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01549-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing