Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-picosecond steering of ultrafast incoherent emission from semiconductor metasurfaces

Abstract

The ability to dynamically steer sub-picosecond pulses from a monolithically integrated source is a critical milestone for the fields of nanophotonics and ultrafast optics. Reconfigurable dielectric metasurfaces have demonstrated the potential to exert dynamic control over the properties of light at sub-wavelength scales using spatial phase engineering. However, active manipulation of incoherent light sources remains a challenge, as current phase-sensitive metasurfaces developed for coherent sources cannot be directly applied. Here we theoretically predict and experimentally demonstrate sub-picosecond steering of ultrafast incoherent emission from a light-emitting metasurface over a 70° range. We utilize a monolithic III–V (GaAs) metasurface with embedded (InAs quantum dot) light sources positioned on a reflective Bragg (AlAs/Al0.3Ga0.7As) mirror to achieve a large optically induced phase change near the emission wavelength (1.25 μm). We use a spatial light modulator to structure a strong optical pump (800 nm) and project it onto the resonant metasurface to create reconfigurable spatial momentum profiles that dynamically steer the ultrafast (140 fs) quantum dot emission. Such dynamic spatiotemporal control of incoherent sources can enable new technologies for high-speed communications, holography and remote sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operational principle of incoherent emission steering.
Fig. 2: Metasurface design and characterization.
Fig. 3: Spatiotemporal control of light emission.
Fig. 4: Beam-steering of PL.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published Article (and its Supplementary Information files).

References

  1. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  ADS  Google Scholar 

  2. Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  ADS  Google Scholar 

  3. Butakov, N. A. et al. Broadband electrically tunable dielectric resonators using metal-insulator transitions. ACS Photonics 5, 4056–4060 (2018).

    Article  Google Scholar 

  4. Iyer, P. P. et al. III-V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics 6, 1345–1350 (2019).

    Article  Google Scholar 

  5. Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultra-thin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).

    Article  ADS  Google Scholar 

  6. Xie, Y.-Y. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    Article  ADS  Google Scholar 

  7. Shaltout, A. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019).

    Article  ADS  Google Scholar 

  8. Klopfer, E. et.al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Lett. https://doi.org/10.1021/ACS.NANOLETT.1C04723 (2021).

  9. Thureja, P. et al. Array-level inverse design of beam steering active metasurfaces. ACS Nano 14, 15042–15055 (2020).

    Article  Google Scholar 

  10. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  ADS  Google Scholar 

  11. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2020).

    Article  ADS  Google Scholar 

  12. Vaskin, A. et al. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Article  Google Scholar 

  13. Liu, S. et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 18, 6906–6914 (2018).

    Article  ADS  Google Scholar 

  14. Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photonics 2, 172–177 (2015).

    Article  Google Scholar 

  15. Yuan, L. et al. Manipulation of exciton dynamics in single-layer WSe2 using a toroidal dielectric metasurface. Nano Lett. 21, 9930–9938 (2021).

    Article  ADS  Google Scholar 

  16. Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photon. Rev. 14, 1900235 (2020).

    Article  ADS  Google Scholar 

  17. Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photon. 14, 543–548 (2020).

    Article  ADS  Google Scholar 

  18. Mohtashami, Y. et al. Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission. Nat. Commun. 12, 3591 (2021).

    Article  ADS  Google Scholar 

  19. Song, W. et al. 3D holographic displays: large‐scale Huygens’ metasurfaces for holographic 3D near‐eye displays. Laser Photon. Rev. 15, 2170047 (2021).

    Article  ADS  Google Scholar 

  20. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  ADS  Google Scholar 

  21. Akselrod, G. M. et al. Lidar systems based on tunable optical metasurfaces. US patent 20210141060 (2021).

  22. Langguth, L. et al. Plasmonic phase-gradient metasurface for spontaneous emission control. Phys. Rev. B 92, 205401 (2015).

    Article  ADS  Google Scholar 

  23. Karl, N. et al. Frequency conversion in a time-variant dielectric metasurface. Nano Lett. 20, 7052–7058 (2020).

    Article  ADS  Google Scholar 

  24. Maas, H. C. D. J. et al. Growth parameter optimization for fast quantum dot SESAMs. Opt. Express 16, 18646–18656 (2008).

    Article  ADS  Google Scholar 

  25. Addamane, S. J. et al. Submonolayer quantum-dot based saturable absorber for femtosecond pulse generation. J. Electron. Mater. 50, 2710–2715 (2021).

    Article  ADS  Google Scholar 

  26. Stintz, A. et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots. JOSA B 19, 1480–1484 (2002).

    Article  ADS  Google Scholar 

  27. Brener, I. et al. Decay times of excitons in lattice‐matched InGaAs/InP single quantum wells. Appl. Phys. Lett. 58, 965 (1998).

    Article  ADS  Google Scholar 

  28. O’Driscoll, I. et al. Electron and hole dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91, 071111 (2007).

    Article  ADS  Google Scholar 

  29. Quochi, F. et al. Coulomb and carrier-activation dynamics of resonantly excited InAs/GaAs quantum dots in two-color pump-probe experiments. Phys. Rev. B 67, 235323 (2003).

    Article  ADS  Google Scholar 

  30. Sjodin, T. et al. Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface. Phys. Rev. Lett. 81, 5664–5667 (1998).

    Article  Google Scholar 

  31. Rafailov, E. U. et al. Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers. IEEE Photonics Technol. Lett. 16, 2439–2441 (2004).

  32. Bellancourt, A. R. et al. Modelocked integrated external-cavity surface emitting laser. IET Optelectron. 3, 61–72 (2009).

    Article  Google Scholar 

  33. Maas, D. J. H. C. et al. Recombination dynamics in quantum dot semiconductor 1 saturable absorber mirrors (QD-SESAMs). In Proc. 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (Optical Society of America, 2008); https://doi.org/10.1109/CLEO.2008.4551066

  34. Quochi, F. et al. Ultrafast carrier dynamics of resonantly excited 1.3-μm InAs/GaAs self-assembled quantum dots. Phys. B 314, 263–267 (2002).

    Article  ADS  Google Scholar 

  35. Lagatsky, A. A. et al. Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers. Prog. Quantum Electron. 34, 1–45 (2010).

    Article  ADS  Google Scholar 

  36. van Dam, D. et al. Directional and polarized emission from nanowire arrays. Nano Lett. 15, 4557–4563 (2015).

    Article  ADS  Google Scholar 

  37. Diedenhofen, S. L. et al. Controlling the directional emission of light by periodic arrays of heterostructured semiconductor nanowires. ACS Nano 5, 5830–5837 (2011).

    Article  Google Scholar 

  38. Na, Y. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photon. 14, 355–360 (2020).

    Article  ADS  Google Scholar 

  39. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1,550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    Article  ADS  Google Scholar 

  40. Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  ADS  Google Scholar 

  41. Abdollahramezani, S. et al. Electrically driven programmable phase-change meta-switch reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).

    Article  ADS  Google Scholar 

  42. Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).

    Article  ADS  Google Scholar 

  43. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    Article  ADS  Google Scholar 

  44. FDTD Solutions (Lumerical Solutions, 2021); https://www.ansys.com/products/photonics/fdtd

  45. Storn, R. & Price, K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  46. Kawasaki-shi, K. et al. ZEP520A. High Resolution Positive Electron Beam Resist. Technical Report (Zeon, Specialty Materials Division, 2003).

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US DOE Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract no. DE-NA0003525. This Article describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US DOE or the United States Government. This study was funded by the US DOE Basic Energy Science Program (BES20017574).

Author information

Authors and Affiliations

Authors

Contributions

P.P.I., N.K. and I.B. designed the study. P.P.I. performed the numerical simulations and fabricated the device. S.A. grew the support wafer in MBE. P.P.I., N.K. and S.D.G. measured the ultrafast results. P.P.I. wrote the paper with input from all the authors under the supervision of M.B.S. and I.B.

Corresponding authors

Correspondence to Prasad P. Iyer or Igal Brener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of contents. 1. Refractive index shift in GaAs with optical pumping. 2. Measurement set-up for pump–probe reflection measurements. 3. Momentum matching model for predicting PL steering angle. 4. Control experiments on unpatterned epitaxial films. 5. Visible reflection spectra of the metasurface. 6. Semiconductor device stack grown using molecular beam epitaxy (MBE). 7. Far-field emission pattern from the metasurface for a pump grating order of ±25.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, P.P., Karl, N., Addamane, S. et al. Sub-picosecond steering of ultrafast incoherent emission from semiconductor metasurfaces. Nat. Photon. 17, 588–593 (2023). https://doi.org/10.1038/s41566-023-01172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01172-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing