Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics

Abstract

Precise control of the conductivity of layered ferroelectric semiconductors is required to make these materials suitable for advanced transistor, memory and logic circuits. Although proof-of-principle devices based on layered ferroelectrics have been demonstrated, it remains unclear how the polarization inversion induces conductivity changes. Therefore, function design and performance optimization remain cumbersome. Here we combine ab initio calculations with transport experiments to unveil the mechanism underlying the polarization-dependent conductivity in ferroelectric channel field-effect transistors. We find that the built-in electric field gives rise to an asymmetric conducting route formed by the hidden Stark effect and competes with the potential redistribution caused by the external field of the gate. Furthermore, leveraging our mechanistic findings, we control the conductivity threshold in α-In2Se3 ferroelectric channel field-effect transistors. We demonstrate logic-in-memory functionality through the implementation of electrically self-switchable primary (AND, OR) and composite (XOR, NOR, NAND) logic gates. Our work provides mechanistic insights into conductivity modulation in a broad class of layered ferroelectrics, providing foundations for their application in logic and memory electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hidden Stark effect in the layered ferroelectric α-In2Se3 enables the formation of an asymmetric conducting route.
Fig. 2: Potential redistribution determined by the polarization direction with respect to the gate.
Fig. 3: Asymmetric conducting route and gate-induced potential redistribution for controlled conductivity threshold modulation.
Fig. 4: Experimental implementation of conductivity threshold modulation for self-switchable logic-in-memory.
Fig. 5: Potential verification for electrically self-switchable functional logic-in-memory circuits.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    CAS  PubMed  ADS  Google Scholar 

  2. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    CAS  PubMed  ADS  Google Scholar 

  4. Li, Q. et al. Optoelectronic and ionic effects on transport in van der Waals metal selenophosphate AgBiP2Se6. Phys. Rev. Appl. 19, 054055 (2023).

    CAS  ADS  Google Scholar 

  5. Shang, J. et al. Stacking-dependent interlayer ferroelectric coupling and moiré domains in a twisted AgBiP2Se6 bilayer. J. Phys. Chem. Lett. 13, 2027–2032 (2022).

    CAS  PubMed  Google Scholar 

  6. Liao, J. et al. Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023).

    CAS  PubMed  Google Scholar 

  7. Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 17, 6309–6314 (2017).

    CAS  PubMed  ADS  Google Scholar 

  9. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    CAS  PubMed  ADS  Google Scholar 

  10. Wang, W. et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35, 2210854 (2023).

    CAS  Google Scholar 

  11. Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Xue, F. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 33, 2008709 (2021).

    CAS  Google Scholar 

  13. Yang, H. et al. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci. China Inf. Sci. 62, 220404 (2019).

    Google Scholar 

  14. Si, M. et al. A novel scalable energy-efficient synaptic device: crossbar ferroelectric semiconductor junction. In IEEE International Electron Devices Meeting (IEDM), 6.6.1–6.6.4 (2019).

  15. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    CAS  Google Scholar 

  16. Wang, J. et al. Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. 66, 2288–2296 (2021).

    CAS  Google Scholar 

  17. Wang, L. et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Funct. Mater. 30, 2004609 (2020).

    CAS  Google Scholar 

  18. Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    CAS  Google Scholar 

  19. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    CAS  Google Scholar 

  20. Sun, Y., Wang, S., Chen, X., Zhang, Z. & Zhou, P. Multioperation mode ferroelectric channel devices for memory and computation. Adv. Intell. Syst. 4, 2100198 (2022).

    Google Scholar 

  21. Rodriguez, J. R. et al. Electric field induced metallic behavior in thin crystals of ferroelectric α-In2Se3. Appl. Phys. Lett. https://doi.org/10.1063/5.0014945 (2020).

  22. He, J., Stephenson, G. & Nakhmanson, S. Electronic surface compensation of polarization in PbTiO3 films. J. Appl. Phys. 112, 054112 (2012).

    ADS  Google Scholar 

  23. Fredrickson, K. D. & Demkov, A. A. Switchable conductivity at the ferroelectric interface: nonpolar oxides. Phys. Rev. B 91, 115126 (2015).

    ADS  Google Scholar 

  24. Quindeau, A. et al. Origin of tunnel electroresistance effect in PbTiO3-based multiferroic tunnel junctions. Phys. Rev. B 92, 035130 (2015).

    ADS  Google Scholar 

  25. Radaelli, G. et al. Large room-temperature electroresistance in dual-modulated ferroelectric tunnel barriers. Adv. Mater. 27, 2602–2607 (2015).

    CAS  PubMed  Google Scholar 

  26. Liu, X., Tsymbal, E. Y. & Rabe, K. M. Polarization-controlled modulation doping of a ferroelectric from first principles. Phys. Rev. B 97, 094107 (2018).

    CAS  ADS  Google Scholar 

  27. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    CAS  PubMed  Google Scholar 

  28. Lu, X. & Yang, L. Stark effect of doped two-dimensional transition metal dichalcogenides. Appl. Phys. Lett. 111, 193104 (2017).

    ADS  Google Scholar 

  29. Li, C. et al. Band structure, ferroelectric instability, and spin–orbital coupling effect of bilayer α-In2Se3. J. Appl. Phys. 128, 234106 (2020).

    CAS  ADS  Google Scholar 

  30. Kim, W. Y. et al. Graphene–ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat. Commun. 7, 10429 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Shuai, W.-J., Wang, R. & Zhao, J.-Z. Ferroelectric phase transition driven by anharmonic lattice mode coupling in two-dimensional monolayer In2Se3. Phys. Rev. B 107, 155427 (2023).

    CAS  ADS  Google Scholar 

  32. Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Google Scholar 

  33. Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2021).

    CAS  PubMed  ADS  Google Scholar 

  34. Ding, J., Shao, D.-F., Li, M., Wen, L.-W. & Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 126, 057601 (2021).

    CAS  PubMed  ADS  Google Scholar 

  35. Lv, B. et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater. Horiz. 8, 1472–1480 (2021).

    CAS  PubMed  Google Scholar 

  36. Wan, S. et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10, 14885–14892 (2018).

    CAS  PubMed  Google Scholar 

  37. Smidstrup, S. et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2020).

    CAS  PubMed  ADS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  ADS  Google Scholar 

  39. Kleinman, L. & Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982).

    CAS  ADS  Google Scholar 

  40. Monkhorst, H. J. & Pack, J. D. Special point for Brillouin-zone integrations. Phys. Lett. B 13, 5188–5192 (1976).

    MathSciNet  Google Scholar 

  41. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS  ADS  Google Scholar 

  42. Ferreira, L. G., Marques, M. & Teles, L. K. Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Adv. 1, 032119 (2011).

    ADS  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  ADS  Google Scholar 

  44. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  45. Datta, S. (ed.) Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Cambridge Univ. Press, 1995).

  46. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPK 2D Mater. Appl. 2, 6 (2018).

    Google Scholar 

  47. Wang, L., Pu, Y., Soh, A. K., Shi, Y. & Liu, S. Layers dependent dielectric properties of two dimensional hexagonal boron nitride nanosheets. AIP Adv. 6, 125126 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1200500 (P.Z.)), the National Natural Science Foundation of China (12374025 (R.Q.), 61925402, 62090032 (P.Z.) and 62304042 (S.W.)), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (R.Q.), Science and Technology Commission of Shanghai Municipality (19JC1416600 (P.Z.)), the China Postdoctoral Science Foundation (2022M720032 (S.W.)), the Shanghai Post-Doctoral Excellence Program (2022091) and Sailing Program (23YF1402100) (S.W.)), and the High-Performance Computing Platform of BUPT.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and P.Z. conceived the idea and supervised the work. R.Q., S.W. and Z.D. co-wrote the manuscript. R.Q. and Y.G. performed the calculations. Z.D. and S.W. fabricated devices for electronic measurements, conducted the experiments and analysed the data. J.Z., Y.S. and L.Z. analysed the data and discussed the manuscript.

Corresponding authors

Correspondence to Ruge Quhe, Shuiyuan Wang or Peng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yen-Fu Lin, Geunsik Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–17 containing Figs. 1–20 and corresponding discussions.

Source data

Source Data Fig. 1

source data of Figure 1

Source Data Fig. 2

source data of Figure 2

Source Data Fig. 3

source data of Figure 3

Source Data Fig. 4

source data of Figure 4

Source Data Fig. 5

source data of Figure 5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quhe, R., Di, Z., Zhang, J. et al. Asymmetric conducting route and potential redistribution determine the polarization-dependent conductivity in layered ferroelectrics. Nat. Nanotechnol. 19, 173–180 (2024). https://doi.org/10.1038/s41565-023-01539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01539-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing