Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferroelectric order in van der Waals layered materials

Abstract

Structurally different from conventional oxide ferroelectrics with rigid lattices, van der Waals (vdW) ferroelectrics have stable layered structures with a combination of strong intralayer and weak interlayer forces. These special atomic arrangements, in combination with the ferroelectric order, give rise to fundamentally new phenomena and functionalities, including downscaling limits, origin of the polarization and switching mechanisms. Furthermore, their easily stackable nature means that vdW ferroelectrics are readily integrable with highly dissimilar materials, such as industrial silicon substrates, without interfacial issues, and are thus regarded as attractive building blocks for post-Moore’s law electronics. In this Review, we consider the experimentally verified vdW ferroelectric systems by discussing their unique characteristics, such as quadruple-well potentials, metallic ferroelectricity and dipole-locking effects. We highlight the emerging field of engineered vdW ferroelectricity, created by artificially breaking centrosymmetry in stacks of otherwise nonpolar parent materials. Additionally, innovative device applications harnessing vdW ferroelectricity are showcased, including transistors able to beat the Boltzmann tyranny, nonvolatile memories and optoelectronic and flexible devices. Recent progress and existing challenges provide a perspective on future research directions and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quadruple-well potential vdW ferroelectric CuInP2S6.
Fig. 2: Metallic ferroelectricity in WTe2.
Fig. 3: Dipole-locking effect and antiferroelectric polar order in In2Se3.
Fig. 4: Crystal structure and evidence for ferroelectricity in SnS, SnSe, SnTe and MoTe2.
Fig. 5: Stacking-engineered ferroelectricity out of nonpolar vdW materials.
Fig. 6: Emerging nanoelectronics based on vdW ferroelectrics.

Similar content being viewed by others

References

  1. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    Article  CAS  Google Scholar 

  2. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

    Article  CAS  Google Scholar 

  3. Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).

    Article  CAS  Google Scholar 

  4. Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).

    Article  CAS  Google Scholar 

  5. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  Google Scholar 

  6. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    Article  CAS  Google Scholar 

  7. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article  CAS  Google Scholar 

  8. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  9. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  10. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  11. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  12. Neumayer, S. M. et al. Alignment of polarization against an electric field in van der Waals ferroelectrics. Phys. Rev. Appl. 13, 064063 (2020).

    Article  CAS  Google Scholar 

  13. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  CAS  Google Scholar 

  14. Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

    Article  CAS  Google Scholar 

  15. Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

    Article  Google Scholar 

  16. Sutter, P., Komsa, H. P., Lu, H., Gruverman, A. & Sutter, E. Few-layer tin sulfide (SnS): controlled synthesis, thickness dependent vibrational properties, and ferroelectricity. Nano Today 37, 101082 (2021).

    Article  CAS  Google Scholar 

  17. Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).

    Article  CAS  Google Scholar 

  18. Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973).

    Article  CAS  Google Scholar 

  19. Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

    Article  CAS  Google Scholar 

  20. Sharma, P., Reece, T. J., Ducharme, S. & Gruverman, A. High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett. 11, 1970–1975 (2011).

    Article  CAS  Google Scholar 

  21. Sharma, P. et al. Nanoscale domain patterns in ultrathin polymer ferroelectric films. J. Phys. Condens. Matter 21, 485902 (2009).

    Article  CAS  Google Scholar 

  22. Blinov, L. M. et al. Two-dimensional ferroelectrics. Phys. Uspekhi 43, 243–257 (2000).

    Article  CAS  Google Scholar 

  23. Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    Article  CAS  Google Scholar 

  24. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 9, 3319 (2018).

    Article  CAS  Google Scholar 

  26. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  27. Zhou, S. et al. Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor. Mater. Horiz. 7, 263–274 (2020).

    Article  CAS  Google Scholar 

  28. Rodriguez, J. R. et al. Electric field induced metallic behavior in thin crystals of ferroelectric α-In2Se3. Appl. Phys. Lett. 117, 052901 (2020).

    Article  CAS  Google Scholar 

  29. Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Article  Google Scholar 

  30. Bennett, J. W., Grinberg, I. & Rappe, A. M. New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: a theoretical study. J. Am. Chem. Soc. 130, 17409–17412 (2008).

    Article  CAS  Google Scholar 

  31. Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

    Article  Google Scholar 

  32. Gomes, L. C. & Carvalho, A. Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 92, 085406 (2015).

    Article  Google Scholar 

  33. Huang, Y. C. et al. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures. Nanoscale 9, 8616–8622 (2017).

    Article  CAS  Google Scholar 

  34. Zheng, Z. et al. Unconventional ferroelectricity in moire heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  Google Scholar 

  35. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  36. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  CAS  Google Scholar 

  37. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  CAS  Google Scholar 

  38. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  CAS  Google Scholar 

  39. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).

    Article  Google Scholar 

  40. Qiao, H., Wang, C., Choi, W. S., Park, M. H. & Kim, Y. Ultra-thin ferroelectrics. Mater. Sci. Eng. R 145, 100622 (2021).

    Article  Google Scholar 

  41. Guan, Z. et al. Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6, 1900818 (2020).

    Article  CAS  Google Scholar 

  42. Zhang, D. et al. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett. 21, 995–1002 (2021).

    Article  CAS  Google Scholar 

  43. Maisonneuve, V. et al. Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6. Ferroelectrics 196, 257–260 (1997).

    Article  CAS  Google Scholar 

  44. Simon, A., Ravez, J., Maisonneuve, V., Payen, C. & Cajipe, V. B. Paraelectric–ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6, 1575–1580 (1994).

    Article  CAS  Google Scholar 

  45. Banys, J., Macutkevic, J., Samulionis, V., Brilingas, A. & Vysochanskii, Y. Dielectric and ultrasonic investigation of phase transition in CuInP2S6 crystals. Phase Transit. 77, 345–358 (2004).

    Article  CAS  Google Scholar 

  46. Bourdon, X., Grimmer, A. R. & Cajipe, V. B. 31P MAS NMR study of the ferrielectric−paraelectric transition in layered CuInP2S6. Chem. Mater. 11, 2680–2686 (1999).

    Article  CAS  Google Scholar 

  47. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article  CAS  Google Scholar 

  48. Maisonneuve, V., Cajipe, V. B., Simon, A., Von Der Muhll, R. & Ravez, J. Ferrielectric ordering in lamellar CuInP2S6. Phys. Rev. B 56, 10860–10868 (1997).

    Article  CAS  Google Scholar 

  49. Vysochanskii, Y. M., Stephanovich, V. A., Molnar, A. A., Cajipe, V. B. & Bourdon, X. Raman spectroscopy study of the ferrielectric–paraelectric transition in layered CuInP2S6. Phys. Rev. B 58, 9119–9124 (1998).

    Article  CAS  Google Scholar 

  50. Urbanaviciute, I. et al. Negative piezoelectric effect in an organic supramolecular ferroelectric. Mater. Horiz. 6, 1688–1698 (2019).

    Article  CAS  Google Scholar 

  51. Katsouras, I. et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016).

    Article  CAS  Google Scholar 

  52. Bystrov, V. S. et al. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Model. 19, 3591–3602 (2013).

    Article  CAS  Google Scholar 

  53. Dziaugys, A. et al. Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6. Nat. Commun. 11, 3623 (2020).

    Article  Google Scholar 

  54. Song, W., Fei, R. & Yang, L. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer. Phys. Rev. B 96, 235420 (2017).

    Article  Google Scholar 

  55. Vysochanskii, Y. M., Molnar, A. A., Gurzan, M. I., Cajipe, V. B. & Bourdon, X. Dielectric measurement study of lamellar CuInP2Se6: successive transitions towards a ferroelectric state via an incommensurate phase? Solid. State Commun. 115, 13–17 (2000).

    Article  CAS  Google Scholar 

  56. Lai, Y. et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale 11, 5163–5170 (2019).

    Article  CAS  Google Scholar 

  57. Studenyak, I. P. et al. Disordering effect on optical absorption processes in CuInP2S6 layered ferrielectrics. Phys. Status Solidi B 236, 678–686 (2003).

    Article  CAS  Google Scholar 

  58. Balke, N. et al. Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces 10, 27188–27194 (2018).

    Article  CAS  Google Scholar 

  59. Chyasnavichyus, M. et al. Size-effect in layered ferrielectric CuInP2S6. Appl. Phys. Lett. 109, 172901 (2016).

    Article  Google Scholar 

  60. Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015).

    Article  CAS  Google Scholar 

  61. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  62. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: “ferroelectric” metals? Phys. Rev. Lett. 14, 217–219 (1965).

    Article  CAS  Google Scholar 

  63. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013).

    Article  CAS  Google Scholar 

  64. Lei, S. et al. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal, Ca3Ru2O7. Nano Lett. 18, 3088–3095 (2018).

    Article  CAS  Google Scholar 

  65. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966).

    Article  CAS  Google Scholar 

  66. Dawson, W. G. & Bullett, D. W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C 20, 6159–6174 (1987).

    Article  CAS  Google Scholar 

  67. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  68. Kabashima, S. Electrical properties of tungsten-ditelluride WTe2. J. Phys. Soc. Jpn 21, 945–948 (1966).

    Article  CAS  Google Scholar 

  69. Augustin, J. et al. Electronic band structure of the layered compound Td-WTe2. Phys. Rev. B 62, 10812–10823 (2000).

    Article  CAS  Google Scholar 

  70. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  CAS  Google Scholar 

  71. Liu, X. et al. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale 11, 18575–18581 (2019).

    Article  CAS  Google Scholar 

  72. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  CAS  Google Scholar 

  73. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  74. Hu, H. et al. Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology 32, 385202 (2021).

    Article  CAS  Google Scholar 

  75. Hu, H. et al. Room-temperature out-of-plane and in-plane ferroelectricity of two-dimensional β-InSe nanoflakes. Appl. Phys. Lett. 114, 252903 (2019).

    Article  Google Scholar 

  76. Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143–10149 (2019).

    Article  CAS  Google Scholar 

  77. Küpers, M. et al. Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of α-In2Se3. Inorg. Chem. 57, 11775–11781 (2018).

    Article  Google Scholar 

  78. Popovic, S., Tonejc, A., Grzeta-Plenkovic, B., Celustka, B. & Trojko, R. Revised and new crystal data for indium selenides. J. Appl. Crystallogr. 12, 416–420 (1979).

    Article  CAS  Google Scholar 

  79. van Landuyt, J., van Tendeloo, G. & Amelinckx, S. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Phys. Status Solidi A 30, 299–314 (1975).

    Article  Google Scholar 

  80. Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).

    Article  CAS  Google Scholar 

  81. Lv, B. et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater. Horiz. 8, 1472–1480 (2021).

    Article  CAS  Google Scholar 

  82. Collins, J. L. et al. Electronic band structure of in-plane ferroelectric van der Waals β′-In2Se3. ACS Appl. Electron. Mater. 2, 213–219 (2020).

    Article  CAS  Google Scholar 

  83. Zhang, F. et al. Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3. ACS Nano 13, 8004–8011 (2019).

    Article  CAS  Google Scholar 

  84. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

    Article  Google Scholar 

  85. Zhang, Z. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit. Adv. Mater. 34, e2106951 (2022).

    Article  Google Scholar 

  86. Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β′-In2Se3. Nat. Commun. 12, 3665 (2021).

    Article  CAS  Google Scholar 

  87. Chen, Z. et al. Atomic imaging of electrically switchable striped domains in β′-In2Se3. Adv. Sci. 8, e2100713 (2021).

    Article  Google Scholar 

  88. Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020).

    Article  CAS  Google Scholar 

  89. Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016).

    Article  CAS  Google Scholar 

  90. Villanova, J. W., Kumar, P. & Barraza-Lopez, S. Theory of finite-temperature two-dimensional structural transformations in group-IV monochalcogenide monolayers. Phys. Rev. B 101, 184101 (2020).

    Article  CAS  Google Scholar 

  91. Orlova, N. N., Timonina, A. V., Kolesnikov, N. N. & Deviatov, E. V. Thermoelectric response as a tool to observe electrocaloric effect in a thin conducting ferroelectric SnSe flake. Phys. Rev. B 104, 045304 (2021).

    Article  CAS  Google Scholar 

  92. Orlova, N. N., Timonina, A. V., Kolesnikov, N. N. & Deviatov, E. V. Switching ferroelectricity in SnSe across phase transition. Europhys. Lett. 135, 37002 (2021).

    Article  CAS  Google Scholar 

  93. Chang, K. et al. Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure. Adv. Mater. 31, e1804428 (2019).

    Article  Google Scholar 

  94. Mehboudi, M. et al. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 16, 1704–1712 (2016).

    Article  CAS  Google Scholar 

  95. Mehboudi, M. et al. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 117, 246802 (2016).

    Article  Google Scholar 

  96. Barraza-Lopez, S., Kaloni, T. P., Poudel, S. P. & Kumar, P. Tuning the ferroelectric-to-paraelectric transition temperature and dipole orientation of group-IV monochalcogenide monolayers. Phys. Rev. B 97, 024110 (2018).

    Article  CAS  Google Scholar 

  97. Barraza-Lopez, S., Fregoso, B. M., Villanova, J. W., Parkin, S. S. P. & Chang, K. Colloquium: physical properties of group-IV monochalcogenide monolayers. Rev. Mod. Phys. 93, 011001 (2021).

    Article  CAS  Google Scholar 

  98. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    Article  CAS  Google Scholar 

  99. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

    Article  CAS  Google Scholar 

  100. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  101. Morozovska, A. N. et al. Flexoinduced ferroelectricity in low-dimensional transition metal dichalcogenides. Phys. Rev. B 102, 075417 (2020).

    Article  CAS  Google Scholar 

  102. Bruyer, E. et al. Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te). Phys. Rev. B 94, 195402 (2016).

    Article  Google Scholar 

  103. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).

    Article  Google Scholar 

  104. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article  Google Scholar 

  105. Tsymbal, E. Y. Two-dimensional ferroelectricity by design. Science 372, 1389–1390 (2021).

    Article  CAS  Google Scholar 

  106. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  Google Scholar 

  107. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  CAS  Google Scholar 

  108. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article  CAS  Google Scholar 

  109. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article  CAS  Google Scholar 

  110. Chen, S. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 33, 2000857 (2021).

    Article  CAS  Google Scholar 

  111. Seidel, J. Nanoelectronics based on topological structures. Nat. Mater. 18, 188–190 (2019).

    Article  CAS  Google Scholar 

  112. Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  CAS  Google Scholar 

  113. Scott, J. F. & Araujo, C. A. P. D. Ferroelectric memories. Science 246, 1400–1405 (1989).

    Article  CAS  Google Scholar 

  114. Ma, T. P. & Jin-Ping, H. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Device Lett. 23, 386–388 (2002).

    Article  CAS  Google Scholar 

  115. Wurfel, P. & Batra, I. P. Depolarization-field-induced instability in thin ferroelectric films-experiment and theory. Phys. Rev. B 8, 5126–5133 (1973).

    Article  CAS  Google Scholar 

  116. Dai, M. et al. Intrinsic dipole coupling in 2D van der Waals ferroelectrics for gate-controlled switchable rectifier. Adv. Electron. Mater. 6, 1900975 (2019).

    Article  Google Scholar 

  117. Wan, S. et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale 10, 14885–14892 (2018).

    Article  CAS  Google Scholar 

  118. Poh, S. M. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett. 18, 6340–6346 (2018).

    Article  CAS  Google Scholar 

  119. Luo, Z. D., Yang, M. M., Liu, Y. & Alexe, M. Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv. Mater. 33, e2005620 (2021).

    Article  Google Scholar 

  120. Wu, G. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020).

    Article  CAS  Google Scholar 

  121. Luo, Z.-D. et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14, 746–754 (2020).

    Article  CAS  Google Scholar 

  122. Lv, L. et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 10, 3331 (2019).

    Article  Google Scholar 

  123. Li, T. et al. Polarization-mediated modulation of electronic and transport properties of hybrid MoS2–BaTiO3–SrRuO3 tunnel junctions. Nano Lett. 17, 922–927 (2017).

    Article  CAS  Google Scholar 

  124. Wang, X. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015).

    Article  CAS  Google Scholar 

  125. Lipatov, A., Sharma, P., Gruverman, A. & Sinitskii, A. Optoelectrical molybdenum disulfide (MoS2) — ferroelectric memories. ACS Nano 9, 8089–8098 (2015).

    Article  CAS  Google Scholar 

  126. Lee, H. S. et al. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 8, 3111–3115 (2012).

    Article  CAS  Google Scholar 

  127. Huang, W. et al. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, e1908040 (2020).

    Article  Google Scholar 

  128. Wan, S. et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv. Funct. Mater. 29, 1808606 (2019).

    Article  Google Scholar 

  129. Wang, L. et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Funct. Mater. 30, 2004609 (2020).

    Article  CAS  Google Scholar 

  130. Xi, Z. et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun. 8, 15217 (2017).

    Article  CAS  Google Scholar 

  131. Yamada, H. et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7, 5385–5390 (2013).

    Article  CAS  Google Scholar 

  132. Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

    Article  CAS  Google Scholar 

  133. Pantel, D. et al. Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers. Appl. Phys. Lett. 100, 232902 (2012).

    Article  Google Scholar 

  134. Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5, 6032–6038 (2011).

    Article  CAS  Google Scholar 

  135. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  136. Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    Article  CAS  Google Scholar 

  137. Yoon, J., Hong, S., Song, Y. W., Ahn, J.-H. & Ahn, S.-E. Understanding tunneling electroresistance effect through potential profile in Pt/Hf0.5Zr0.5O2/TiN ferroelectric tunnel junction memory. Appl. Phys. Lett. 115, 153502 (2019).

    Article  Google Scholar 

  138. Goh, Y. & Jeon, S. Enhanced tunneling electroresistance effects in HfZrO-based ferroelectric tunnel junctions by high-pressure nitrogen annealing. Appl. Phys. Lett. 113, 052905 (2018).

    Article  Google Scholar 

  139. Ambriz-Vargas, F. et al. A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces 9, 13262–13268 (2017).

    Article  CAS  Google Scholar 

  140. Park, J. Y. et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective. J. Appl. Phys. 128, 240904 (2020).

    Article  CAS  Google Scholar 

  141. Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Article  Google Scholar 

  142. Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).

    Article  CAS  Google Scholar 

  143. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  CAS  Google Scholar 

  144. Chandrakasan, A. P. & Brodersen, R. W. Minimizing power consumption in digital CMOS circuits. Proc. IEEE 83, 498–523 (1995).

    Article  Google Scholar 

  145. Hoffmann, M., Slesazeck, S. & Mikolajick, T. Progress and future prospects of negative capacitance electronics: a materials perspective. APL Mater. 9, 020902 (2021).

    Article  CAS  Google Scholar 

  146. Wang, X. et al. Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Article  Google Scholar 

  147. Wang, F. et al. Subthermionic field-effect transistors with sub-5 nm gate lengths based on van der Waals ferroelectric heterostructures. Sci. Bull. 65, 1444–1450 (2020).

    Article  CAS  Google Scholar 

  148. Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

    Article  CAS  Google Scholar 

  149. Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett. 18, 3682–3687 (2018).

    Article  CAS  Google Scholar 

  150. Wang, X. et al. Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. npj 2D Mater. Appl. 1, 38 (2017).

    Article  Google Scholar 

  151. McGuire, F. A., Cheng, Z., Price, K. & Franklin, A. D. Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer. Appl. Phys. Lett. 109, 093101 (2016).

    Article  Google Scholar 

  152. Zhou, J. et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400–6405 (2015).

    Article  CAS  Google Scholar 

  153. Island, J. O., Blanter, S. I., Buscema, M., van der Zant, H. S. J. & Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 15, 7853–7858 (2015).

    Article  CAS  Google Scholar 

  154. Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014).

    Article  CAS  Google Scholar 

  155. Feng, W. et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces 10, 27584–27588 (2018).

    Article  CAS  Google Scholar 

  156. Hou, P., Lv, Y., Zhong, X. & Wang, J. α-In2Se3 nanoflakes modulated by ferroelectric polarization and Pt nanodots for photodetection. ACS Appl. Nano Mater. 2, 4443–4450 (2019).

    Article  CAS  Google Scholar 

  157. Dutta, D., Mukherjee, S., Uzhansky, M. & Koren, E. Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. npj 2D Mater. Appl. 5, 81 (2021).

    Article  CAS  Google Scholar 

  158. Xue, F. et al. Optically controlled ferroelectric nanodomains for logic-in-memory photonic devices with simplified structures. IEEE Trans. Electron. Device 68, 1992–1995 (2021).

    Article  CAS  Google Scholar 

  159. Xue, F. et al. Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30, 2004206 (2020).

    Article  CAS  Google Scholar 

  160. Xu, K. et al. Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale 12, 23488–23496 (2020).

    Article  CAS  Google Scholar 

  161. Zhang, Y. et al. Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater. 7, 2100609 (2021).

    Article  CAS  Google Scholar 

  162. Kwon, K. C. et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 14, 7628–7638 (2020).

    Article  CAS  Google Scholar 

  163. Bian, J., Cao, Z. & Zhou, P. Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 8, 041313 (2021).

    Article  CAS  Google Scholar 

  164. Li, Y. et al. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021).

    Article  CAS  Google Scholar 

  165. Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl 2, 18 (2018).

    Article  Google Scholar 

  166. Dai, M. et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett. 19, 5410–5416 (2019).

    Article  CAS  Google Scholar 

  167. Hou, P. et al. In-plane strain-modulated photoresponsivity of the α-In2Se3-based flexible transistor. ACS Appl. Electron. Mater. 2, 140–146 (2020).

    Article  CAS  Google Scholar 

  168. Xue, F. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 12, 4976–4983 (2018).

    Article  CAS  Google Scholar 

  169. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  170. Chen, C. et al. Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect. Nano Lett. 22, 3275–3282 (2022).

    Article  CAS  Google Scholar 

  171. Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn 31, 506–510 (1971).

    Article  CAS  Google Scholar 

  172. Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103–1112 (1939).

    Article  CAS  Google Scholar 

  173. Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    Article  Google Scholar 

  174. Wu, J. et al. Accurate force field of two-dimensional ferroelectrics from deep learning. Phys. Rev. B 104, 174107 (2021).

    Article  CAS  Google Scholar 

  175. Sharma, P. et al. Conformational domain wall switch. Adv. Funct. Mater. 29, 1807523 (2019).

    Article  Google Scholar 

  176. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Article  Google Scholar 

  177. Sharma, P., Moise, T. S., Colombo, L. & Seidel, J. Roadmap for ferroelectric domain wall nanoelectronics. Adv. Funct. Mater. 32, 2110263 (2021).

    Article  Google Scholar 

  178. Sharma, P., Schoenherr, P. & Seidel, J. Functional ferroic domain walls for nanoelectronics. Materials 12, 2927 (2019).

    Article  CAS  Google Scholar 

  179. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  Google Scholar 

  180. Hou, F. et al. Oxidation kinetics of WTe2 surfaces in different environments. ACS Appl. Electron. Mater. 2, 2196–2202 (2020).

    Article  CAS  Google Scholar 

  181. Wang, X., Sun, Y. & Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).

    Article  CAS  Google Scholar 

  182. Mirabelli, G. et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 120, 125102 (2016).

    Article  Google Scholar 

  183. Hoffman, A. N. et al. Atmospheric and long-term aging effects on the electrical properties of variable thickness WSe2 transistors. ACS Appl. Mater. Interfaces 10, 36540–36548 (2018).

    Article  CAS  Google Scholar 

  184. Zhang, D., Sando, D., Pan, Y., Sharma, P. & Seidel, J. Robust ferroelectric polarization retention in harsh environments through engineered domain wall pinning. J. Appl. Phys. 129, 014102 (2021).

    Article  CAS  Google Scholar 

  185. Zhang, D. et al. Superior polarization retention through engineered domain wall pinning. Nat. Commun. 11, 349 (2020).

    Article  Google Scholar 

  186. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Lv (National University of Singapore), K. Chang (Beijing Academy of Quantum Information Sciences), X. Luo (Sun Yat-Sen University), W. Luo (University of Arkansas) and W. Ding (University of Science and Technology of China) for discussions. They acknowledge support by the Australian Research Council through Discovery Grants and the ARC Center of Excellence in Future Low Energy Electronics Technologies (FLEET).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the content and contributed to the writing and revising of the manuscript.

Corresponding authors

Correspondence to Pankaj Sharma or Jan Seidel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Salvador Barraza-Lopez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Schoenherr, P., Sharma, P. et al. Ferroelectric order in van der Waals layered materials. Nat Rev Mater 8, 25–40 (2023). https://doi.org/10.1038/s41578-022-00484-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00484-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing