Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrahigh-printing-speed photoresists for additive manufacturing

Abstract

Printing technology for precise additive manufacturing at the nanoscale currently relies on two-photon lithography. Although this methodology can overcome the Rayleigh limit to achieve nanoscale structures, it still operates at too slow of a speed for large-scale practical applications. Here we show an extremely sensitive zirconium oxide hybrid-(2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine) (ZrO2-BTMST) photoresist system that can achieve a printing speed of 7.77 m s–1, which is between three and five orders of magnitude faster than conventional polymer-based photoresists. We build a polygon laser scanner-based two-photon lithography machine with a linear stepping speed approaching 10 m s–1. Using the ZrO2-BTMST photoresist, we fabricate a square raster with an area of 1 cm2 in ~33 min. Furthermore, the extremely small chemical components of the ZrO2-BTMST photoresist enable high-precision patterning, leading to a line width as small as 38 nm. Calculations assisted by characterizations reveal that the unusual sensitivity arises from an efficient light-induced polarity change of the ZrO2 hybrid. We envisage that the exceptional sensitivity of our organic–inorganic hybrid photoresist may lead to a viable large-scale additive manufacturing nanofabrication technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TPL oil-immersion exposure mode schematic and structures of BTMST and the ZrO2 hybrid.
Fig. 2: Patterns exposed by a polygon laser scanner-based TPL machine with a light wavelength of 780 nm using ZrO2-BTMST photoresists.
Fig. 3: SEM images of ZrO2-BTMST photoresists exposed by a galvanometric scanner-based TPL machine with a light wavelength of 532 nm.
Fig. 4: Experimental characterizations and DFT calculations of initiator BTMST.
Fig. 5: DFT-COSMO simulated structures and charge distributions.
Fig. 6: Plausible patterning mechanism of ZrO2-BTMST photoresists.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Erkal, J. L. et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).

    Article  CAS  Google Scholar 

  2. Huang, T. Y. et al. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27, 6644–6650 (2015).

    Article  CAS  Google Scholar 

  3. von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).

    Article  Google Scholar 

  4. Xiong, W. et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication. Adv. Mater. 28, 2002–2009 (2016).

    Article  CAS  Google Scholar 

  5. Zhang, W. et al. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv. Funct. Mater. 31, 2104909 (2021).

    Article  CAS  Google Scholar 

  6. Wei, T. S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).

    Article  Google Scholar 

  7. Symes, M. D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012).

    Article  CAS  Google Scholar 

  8. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    Article  CAS  Google Scholar 

  9. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  Google Scholar 

  10. Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  CAS  Google Scholar 

  11. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  CAS  Google Scholar 

  12. Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    Article  CAS  Google Scholar 

  13. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  14. Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a review. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    Article  CAS  Google Scholar 

  15. Arnoux, C. et al. Polymerization photoinitiators with near-resonance enhanced two-photon absorption cross-section: toward high-resolution photoresist with improved sensitivity. Macromolecules 53, 9264–9278 (2020).

    Article  CAS  Google Scholar 

  16. Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    Article  Google Scholar 

  17. Jin, F. et al. λ/30 inorganic features achieved by multi-photon 3D lithography. Nat. Commun. 13, 1357 (2022).

    Article  CAS  Google Scholar 

  18. Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article  CAS  Google Scholar 

  19. Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article  Google Scholar 

  20. Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).

    Article  Google Scholar 

  21. Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21, 26244–26260 (2013).

    Article  Google Scholar 

  22. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  CAS  Google Scholar 

  23. Malinauskas, M., Zukauskas, A., Bickauskaite, G., Gadonas, R. & Juodkazis, S. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Express 18, 10209–10221 (2010).

    Article  CAS  Google Scholar 

  24. Shaw, L. A. et al. Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express 26, 13543–13548 (2018).

    Article  CAS  Google Scholar 

  25. Ito, H. Chemical amplification resists for microlithography. Adv. Polym. Sci. 172, 37–245 (2005).

    Article  CAS  Google Scholar 

  26. Ito, H. Chemical amplification resists: inception, implementation in device manufacture, and new developments. J. Polym. Sci. A 41, 3863–3870 (2003).

    Article  CAS  Google Scholar 

  27. Ito, H. Chemical amplification resists: History and development within IBM. IBM J. Res. Dev. 41, 69–80 (1997).

    Article  CAS  Google Scholar 

  28. Bourzac, K. A giant bid to etch tiny circuits. Nature 487, 419 (2012).

    Article  CAS  Google Scholar 

  29. Lithography roadmap on track. Nat. Photon. 4, 20 (2010).

  30. Totzeck, M., Ulrich, W., Göhnermeier, A. & Kaiser, W. Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629–631 (2007).

    Article  CAS  Google Scholar 

  31. Trikeriotis, M. et al. Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning. J. Photopolym. Sci. Technol. 25, 583–586 (2012).

    Article  CAS  Google Scholar 

  32. Jiang, J., Chakrabarty, S., Yu, M. & Ober, C. K. Metal oxide nanoparticle photoresists for EUV patterning. J. Photopolym. Sci. Technol. 27, 663–666 (2014).

    Article  Google Scholar 

  33. Xu, H. et al. Metal-organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 30, 4124–4133 (2018).

    Article  CAS  Google Scholar 

  34. Tanaka, H., Matsumoto, A., Akinaga, K., Takahashi, A. & Okada, T. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas. Appl. Phys. Lett. 87, 041503 (2005).

    Article  Google Scholar 

  35. Service, R. F. Optical lithography goes to extremes-and beyond. Science 293, 785–786 (2001).

    Article  CAS  Google Scholar 

  36. The shrinking chip. Nat. Photonics 3, 485 (2009).

  37. Xu, H., Kosma, V., Giannelis, E. P. & Ober, C. K. In pursuit of Moore’s Law: polymer chemistry in action. Polym. J. 50, 45–55 (2018).

    Article  Google Scholar 

  38. Rayleigh, L. On the theory of optical images, with special reference to the microscope. J. R. Microsc. Soc. 42, 167–195 (2011).

    Google Scholar 

  39. Wagner, C. & Harned, N. Lithography gets extreme. Nat. Photon. 4, 24–26 (2010).

    Article  CAS  Google Scholar 

  40. Sanders, D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).

    Article  CAS  Google Scholar 

  41. Pohlers, G., Scaiano, J. C., Step, E. & Sinta, R. Ionic vs free radical pathways in the direct and sensitized photochemistry of 2-(4′-methoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine: relevance for photoacid generation. J. Am. Chem. Soc. 121, 6167–6175 (1999).

    Article  CAS  Google Scholar 

  42. Pohlers, G., Scaiano, J. C., Sinta, R., Brainard, R. & Pai, D. Mechanistic studies of photoacid generation from substituted 4,6-bis(trichloromethyl)-1,3,5-triazines. Chem. Mater. 9, 1353–1361 (1997).

    Article  CAS  Google Scholar 

  43. Ligon, S. C., Husar, B., Wutzel, H., Holman, R. & Liska, R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem. Rev. 114, 557–589 (2014).

    Article  CAS  Google Scholar 

  44. Lu, W. E., Dong, X. Z., Chen, W. Q., Zhao, Z. S. & Duan, X. M. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011).

    Article  CAS  Google Scholar 

  45. Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article  CAS  Google Scholar 

  46. Sheik-Bahae, M., Said, A. A. & Van Stryland, E. W. High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955–957 (1989).

    Article  CAS  Google Scholar 

  47. Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical studies of van der Waals molecules and intermolecular forces. Chem. Rev. 88, 963–988 (1988).

    Article  CAS  Google Scholar 

  48. Berland, K. et al. Van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).

    Article  Google Scholar 

  49. Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

    Article  CAS  Google Scholar 

  50. Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    Article  CAS  Google Scholar 

  51. Sheng, L. et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 13, 172 (2022).

    Article  CAS  Google Scholar 

  52. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Article  Google Scholar 

  53. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  54. Andzelm, J., Kolmel, C. & Klamt, A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 103, 9312–9320 (1995).

    Article  CAS  Google Scholar 

  55. Klamt, A., Jonas, V., Burger, T. & Lohrenz, J. C. W. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998).

    Article  CAS  Google Scholar 

  56. Mullins, E. et al. Sigma-profile database for using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 45, 4389–4415 (2006).

    Article  CAS  Google Scholar 

  57. Mullins, E., Liu, Y. A., Ghaderi, A. & Fast, S. D. Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 47, 1707–1725 (2008).

    Article  CAS  Google Scholar 

  58. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  59. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  60. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  Google Scholar 

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  62. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  63. Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).

    Article  CAS  Google Scholar 

  64. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  65. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  66. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  67. Frisch, M. J. et al. Gaussian 16 Revision C (Gaussian, 2016).

  68. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

H.X. gratefully acknowledges funding support from the National Natural Science Foundation of China (grant no. 52073161), the Tsinghua University Initiative Scientific Research Program (grant no. 2021Z11GHX010), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (grant no. Z211100004821008) and the Major Scientific Project of Zhejiang Lab (grant no. 2020MC0AE01). T.L. gratefully acknowledges funding support from the China Postdoctoral Science Foundation (grant no. 2021M701826). C.K. gratefully acknowledges funding support from the Major Scientific Project of Zhejiang Lab (grant no. 2020MC0AE01). We thank Y. Wang for his help in experimental measurements of mechanism studies.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and H.X. conceived and designed the experiments. T.L. and P.T. performed structural characterization. T.L., H.W. and M.H. performed TPL performance tests of materials. X.W. and Q.W. performed material synthesis. H.W., M.H. and C.K. constructed the two-photon lithography machines. H.X. and H.C. performed computational calculations. T.L., J.W., Y.T., J.T., N.H., C.K., H.X. and X.H. contributed to the data analysis. T.L., C.K., H.X. and X.H. wrote the paper. All authors participated in the discussion and correction of the paper.

Corresponding authors

Correspondence to Cuifang Kuang, Hong Xu or Xiangming He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Shih-Chi Chen and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental procedures, Supplementary Figs. 1–26, Tables 1–4 and references.

Supplementary Data

Source data for supplementary information.

Source data

Source Data Fig. 2

Source data of the lithographic patterns and structures, and the width and thickness of the line patterns in Fig. 2.

Source Data Fig. 3

Source data of the lithographic patterns and structures in Fig. 3.

Source Data Fig. 4

Source data of the FT-IR and UV–vis spectra, DFT calculated structure of initiator BTMST in Fig. 4.

Source Data Fig. 5

Source data of the DFT calculated structures of the components of the photoresist in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Tao, P., Wang, X. et al. Ultrahigh-printing-speed photoresists for additive manufacturing. Nat. Nanotechnol. 19, 51–57 (2024). https://doi.org/10.1038/s41565-023-01517-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01517-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing