Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes

Abstract

Light confinement in nanostructures produces an enhanced light–matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light–matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume (Vm ≈ 10–10λ03 at an optical wavelength λ0 ≈ 6.4 μm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light–matter interactions, with exciting implications for compact photonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HWG-PhPs in a single BNNT.
Fig. 2: Direct observation of HWG-PhP modes.
Fig. 3: EELS quantitative characterization of HWG-PhP modes.
Fig. 4: Dispersion and Vm confinement of HWG-PhP modes in few-layer BNNTs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  2. Wang, Y. et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020).

    Article  CAS  Google Scholar 

  3. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  CAS  Google Scholar 

  4. Stockman, M. I. Nanoplasmonic sensing and detection. Science 348, 287–288 (2015).

    Article  CAS  Google Scholar 

  5. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article  CAS  Google Scholar 

  6. Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  CAS  Google Scholar 

  7. Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article  CAS  Google Scholar 

  8. Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article  CAS  Google Scholar 

  9. Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article  CAS  Google Scholar 

  10. Wang, K. et al. Coherent interaction between free electrons and a photonic cavity. Nature 582, 50–54 (2020).

    Article  CAS  Google Scholar 

  11. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  12. Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    Article  Google Scholar 

  13. Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).

    Article  CAS  Google Scholar 

  14. Agio, M. & Cano, D. M. The Purcell factor of nanoresonators. Nat. Photon. 7, 674–675 (2013).

    Article  CAS  Google Scholar 

  15. Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  CAS  Google Scholar 

  16. Yao, J., Yang, X., Yin, X., Bartal, G. & Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl Acad. Sci. USA 108, 11327–11331 (2011).

    Article  CAS  Google Scholar 

  17. Su, Y., Chang, P., Lin, C. & Helmy, A. Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Sci. Adv. 5, eaav1790 (2019).

    Article  CAS  Google Scholar 

  18. Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  CAS  Google Scholar 

  19. Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article  CAS  Google Scholar 

  20. Alfaro-Mozaz, F. J. et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).

    Article  CAS  Google Scholar 

  21. Long, J. C. et al. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003).

    Article  CAS  Google Scholar 

  22. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  23. Jiang, N., Zhuo, X. & Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018).

    Article  CAS  Google Scholar 

  24. Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article  CAS  Google Scholar 

  25. Cho, C. H. et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater. 10, 669–675 (2011).

    Article  CAS  Google Scholar 

  26. Cho, C. H., Aspetti, C. O., Park, J. & Agarwal, R. Silicon coupled with plasmon nanocavity generates bright visible hot-luminescence. Nat. Photon. 7, 285–289 (2013).

    Article  CAS  Google Scholar 

  27. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  28. Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  Google Scholar 

  29. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  CAS  Google Scholar 

  30. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  31. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  Google Scholar 

  32. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  33. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  34. Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  CAS  Google Scholar 

  35. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  36. Jacob, Z. Nanophotonics: hyperbolic phonon-polaritons. Nat. Mater. 13, 1081–1083 (2014).

    Article  CAS  Google Scholar 

  37. Yuan, Z. et al. Extremely confined acoustic phonon polaritons in monolayer-hBN/metal heterostructures for strong light–matter interactions. ACS Photon. 7, 2610–2617 (2020).

    Article  CAS  Google Scholar 

  38. Rivera, N., Christensen, T. & Narang, P. Phonon polaritonics in two-dimensional materials. Nano Lett. 19, 2653–2660 (2019).

    Article  CAS  Google Scholar 

  39. Lu, F., Jin, M. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8, 307–312 (2014).

    Article  CAS  Google Scholar 

  40. Ambrosio, A. et al. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11, 8741–8746 (2017).

    Article  CAS  Google Scholar 

  41. Wang, L. et al. Revealing phonon polaritons in hexagonal boron nitride by multipulse peak force infrared microscopy. Adv. Opt. Mater. 8, 1901084 (2019).

    Article  Google Scholar 

  42. Brown, L. V. et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628–1636 (2018).

    Article  CAS  Google Scholar 

  43. Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  CAS  Google Scholar 

  44. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  CAS  Google Scholar 

  45. Xu, X. G. et al. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. ACS Nano 8, 11305–11312 (2014).

    Article  CAS  Google Scholar 

  46. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    Article  CAS  Google Scholar 

  47. Phillips, C., Lai, Y. F. & Walker, G. C. Fabry–Perot phonon polaritons in boron nitride nanotube resonators. J. Phys. Chem. Lett. 12, 11683–11687 (2021).

    Article  CAS  Google Scholar 

  48. Wagner, M. et al. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photon. 5, 1467–1475 (2018).

    Article  CAS  Google Scholar 

  49. Jiang, J. H., Xu, X. G., Gilburd, L. & Walker, G. C. Optical hot-spots in boron-nitride nanotubes at mid infrared frequencies: one-dimensional localization due to random-scattering. Opt. Express 25, 25059–25070 (2017).

    Article  CAS  Google Scholar 

  50. Flater, E. E., Zacharakis-Jutz, G. E., Dumba, B. G., White, I. A. & Clifford, C. A. Towards easy and reliable AFM tip shape determination using blind tip reconstruction. Ultramicroscopy 146, 130–143 (2014).

    Article  CAS  Google Scholar 

  51. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  CAS  Google Scholar 

  52. Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  Google Scholar 

  53. Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  CAS  Google Scholar 

  54. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  CAS  Google Scholar 

  55. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  CAS  Google Scholar 

  56. Wu, C., Salandrino, A., Ni, X. & Zhang, X. Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities. Phys. Rev. X 4, 021015 (2014).

    Google Scholar 

  57. Zhi, C., Bando, Y., Tan, C. & Golberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135, 67–70 (2005).

    Article  CAS  Google Scholar 

  58. Huang, Y. et al. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology 22, 145602 (2011).

    Article  Google Scholar 

  59. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  60. Raza, S. et al. Extremely confined gap surface-plasmon modes excited by electrons. Nat. Commun. 5, 4125 (2014).

    Article  CAS  Google Scholar 

  61. Konečná, A. et al. Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys. Rev. B 98, 205409 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was completed especially for the 20th anniversary of the National Center for Nanoscience and Technology, Beijing, China. This work was also supported by the National Key R&D Program of China (2021YFA1201500 to Q.D.; 2021YFA1400500 to E.-G.W.), the National Natural Science Foundation of China (51925203 and U2032206 to Q.D.; 52022025 and 51972074 to X.Y.; 52102160 to X.G.; 52125307, 11974023, 52021006 and T2188101 to P.G.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000 to X.Y.; XDB36000000 to Q.D.), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (to X.Y.), the Open Project of Nanjing University (M34034 to Q.D.), the ‘2011 Program’ from the Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter (to P.G.) and the Special Research Assistant Program of the Chinese Academy of Sciences (to X.G.). We also acknowledge the Electron Microscopy Laboratory of Peking University for the use of electron microscopes. F.J.G.d.A. acknowledges support from H2020 European Research Council (ERC) (advanced grant 789104-eNANO), Spanish Ministry for Science and Innovation (MCINN) (PID2020-112625GB-I00 and CEX2019-000910-S) and the Catalan Centres de Recerca de Catalunya (CERCA) Program. In addition, we express our gratitude to X. Zhang (Peking University) and S. Zhang (National Center for Nanoscience and Technology) for their help in sample preparation and characterization.

Author information

Authors and Affiliations

Authors

Contributions

The concept for the experiment was initially developed by Q.D., X.Y. and P.G. Hexagonal BN nanotubes were grown by Y.H.; AFM-IR and s-SNOM experiments were performed by X.G. under the direction of Q.D.; STEM–EELS and TEM imaging experiments were performed by N.L. under the direction of P.G. and E.-G.W.; finite-element-method simulations and theoretical analysis were performed by X.G. under the supervision of Q.D., X.Y. and F.J.G.d.A.; data processing was performed by X.G. and N.L., assisted by C.W., R.Q., Y.L. and R.S.; X.G., X.Y. and Q.D. wrote the manuscript with advice from F.J.G.d.A. and P.G. All authors discussed the results at all stages and participated in the development of the manuscript.

Corresponding authors

Correspondence to Xiaoxia Yang, F. Javier García de Abajo, Peng Gao or Qing Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Min Seok Jang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Table 1 and Notes 1–5.

Source data

Source Data Fig. 1

Simulation data points of Fig. 1c.

Source Data Fig. 2

Experiment data points of Fig. 2b.

Source Data Fig. 3

Experiment data points of Fig. 3a,b.

Source Data Fig. 4

Experiment data points of Fig. 4a–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, N., Yang, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023). https://doi.org/10.1038/s41565-023-01324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01324-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing