Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scalable all-optical cold damping of levitated nanoparticles

Abstract

Motional control of levitated nanoparticles relies on either autonomous feedback via a cavity or measurement-based feedback via external forces. Recent demonstrations of the measurement-based ground-state cooling of a single nanoparticle employ linear velocity feedback, also called cold damping, and require the use of electrostatic forces on charged particles via external electrodes. Here we introduce an all-optical cold damping scheme based on the spatial modulation of trap position, which has the advantage of being scalable to multiple particles. The scheme relies on programmable optical tweezers to provide full independent control over the trap frequency and position of each tweezer. We show that the technique cools the centre-of-mass motion of particles along one axis down to 17 mK at a pressure of 2 × 10−6 mbar and demonstrate its scalability by simultaneously cooling the motion of two particles. Our work paves the way towards studying quantum interactions between particles; achieving three-dimensional quantum control of particle motion without cavity-based cooling, electrodes or charged particles; and probing multipartite entanglement in levitated optomechanical systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Programmable tweezers for multiparticle trapping.
Fig. 2: All-optical cold damping by modulating the spatial position of the tweezer.
Fig. 3: Non-equilibrium dynamics of a feedback-cooled particle.
Fig. 4: Simultaneous all-optical cold damping of two particles.

Data availability

Source data for Figs. 1b, 24 and Extended Data Figs. 14 are available via the ETH Zürich Research Collection at https://doi.org/10.3929/ethz-b-000569410.

References

  1. Millen, J., Monteiro, T. S., Pettit, R. & Vamivakas, A. N. Optomechanics with levitated particles. Rep. Prog. Phys. 83, 026401 (2020).

    Article  CAS  Google Scholar 

  2. Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, eabg3027 (2021).

    Article  CAS  Google Scholar 

  3. Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article  Google Scholar 

  4. Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595, 378–382 (2021).

    Article  CAS  Google Scholar 

  5. Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373–377 (2021).

    Article  CAS  Google Scholar 

  6. Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).

    Article  Google Scholar 

  7. Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    Article  CAS  Google Scholar 

  8. Ahn, J. et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).

    Article  CAS  Google Scholar 

  9. van der Laan, F. et al. Sub-kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).

    Article  Google Scholar 

  10. Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).

    Article  Google Scholar 

  11. Hempston, D. et al. Force sensing with an optically levitated charged nanoparticle. Appl. Phys. Lett. 111, 133111 (2017).

    Article  Google Scholar 

  12. Hebestreit, E., Frimmer, M., Reimann, R. & Novotny, L. Sensing static forces with free-falling nanoparticles. Phys. Rev. Lett. 121, 063602 (2018).

    Article  CAS  Google Scholar 

  13. Chauhan, A. K., Černotík, O. & Filip, R. Stationary Gaussian entanglement between levitated nanoparticles. New J. Phys. 22, 123021 (2020).

    Article  CAS  Google Scholar 

  14. Brandão, I., Tandeitnik, D. & Guerreiro, T. Coherent scattering-mediated correlations between levitated nanospheres. Quantum Sci. Technol. 6, 045013 (2021).

    Article  Google Scholar 

  15. Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372, 622–625 (2021).

    Article  CAS  Google Scholar 

  16. de Lépinay, L. M., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).

    Article  Google Scholar 

  17. Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    Article  CAS  Google Scholar 

  18. Landig, R. et al. Quantum phases from competing short- and long-range interactions in an optical lattice. Nature 532, 476–479 (2016).

    Article  CAS  Google Scholar 

  19. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  CAS  Google Scholar 

  20. Liu, S., Yin, Z.-q & Li, T. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array. Adv. Quantum Technol. 3, 1900099 (2020).

    Article  CAS  Google Scholar 

  21. Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article  CAS  Google Scholar 

  22. Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).

    Article  CAS  Google Scholar 

  23. Wang, M. et al. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nat. Commun. 12, 600 (2021).

    Article  CAS  Google Scholar 

  24. Quinn, T. J., Speake, C. C., Richman, S. J., Davis, R. S. & Picard, A. A new determination of G using two methods. Phys. Rev. Lett. 87, 111101 (2001).

    Article  CAS  Google Scholar 

  25. Li, Q. et al. Measurements of the gravitational constant using two independent methods. Nature 560, 582–588 (2018).

    Article  CAS  Google Scholar 

  26. Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    Article  CAS  Google Scholar 

  27. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  CAS  Google Scholar 

  28. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  CAS  Google Scholar 

  29. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  CAS  Google Scholar 

  30. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  CAS  Google Scholar 

  31. Monteiro, F., Ghosh, S., Fine, A. G. & Moore, D. C. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A 96, 063841 (2017).

    Article  Google Scholar 

  32. Li, T. Fundamental Tests of Physics with Optically Trapped Microspheres (Springer, 2013).

  33. Dania, L., Bykov, D. S., Knoll, M., Mestres, P. & Northup, T. E. Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap. Phys. Rev. Research 3, 013018 (2021).

    Article  CAS  Google Scholar 

  34. Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Research 2, 043054 (2020).

    Article  CAS  Google Scholar 

  35. Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    Article  Google Scholar 

  36. Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).

    Article  CAS  Google Scholar 

  37. Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett. 123, 153601 (2019).

    Article  CAS  Google Scholar 

  38. Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

    Article  CAS  Google Scholar 

  39. Tebbenjohanns, F., Frimmer, M., Militaru, A., Jain, V. & Novotny, L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 122, 223601 (2019).

    Article  CAS  Google Scholar 

  40. Rudolph, H., Hornberger, K. & Stickler, B. A. Entangling levitated nanoparticles by coherent scattering. Phys. Rev. A 101, 011804 (2020).

    Article  CAS  Google Scholar 

  41. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

  42. Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article  Google Scholar 

  43. Rieser, J. et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science 377, 987–990 (2022).

    Article  CAS  Google Scholar 

  44. Tebbenjohanns, F., Frimmer, M. & Novotny, L. Optimal position detection of a dipolar scatterer in a focused field. Phys. Rev. A 100, 043821 (2019).

    Article  CAS  Google Scholar 

  45. Hebestreit, E. et al. Calibration and energy measurement of optically levitated nanoparticle sensors. Rev. Sci. Instrum. 89, 033111 (2018).

    Article  Google Scholar 

  46. Steixner, V., Rabl, P. & Zoller, P. Quantum feedback cooling of a single trapped ion in front of a mirror. Phys. Rev. A 72, 043826 (2005).

    Article  Google Scholar 

  47. Bushev, P. et al. Feedback cooling of a single trapped ion. Phys. Rev. Lett. 96, 043003 (2006).

    Article  Google Scholar 

  48. Iwasaki, M. et al. Electric feedback cooling of single charged nanoparticles in an optical trap. Phys. Rev. A 99, 051401 (2019).

    Article  CAS  Google Scholar 

  49. Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article  CAS  Google Scholar 

  50. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  CAS  Google Scholar 

  51. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    Article  CAS  Google Scholar 

  52. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014).

    Article  CAS  Google Scholar 

  53. Yan, J., Yu, X., Han, Z. V., Li, T. & Zhang, J. On-demand assembly of optically-levitated nanoparticle arrays in vacuum. Preprint at https://arxiv.org/abs/2207.03641 (2022).

  54. Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    Article  CAS  Google Scholar 

  55. de los Ríos Sommer, A., Meyer, N. & Quidant, R. Strong optomechanical coupling at room temperature by coherent scattering. Nat. Commun. 12, 276 (2021).

    Article  Google Scholar 

  56. Toroš, M., Delić, U. C. V., Hales, F. & Monteiro, T. S. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics. Phys. Rev. Research 3, 023071 (2021).

    Article  Google Scholar 

  57. Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, K. & Stickler, B. A. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).

    Article  CAS  Google Scholar 

  58. Kamba, M., Shimizu, R. & Aikawa, K. Optical cold damping of neutral nanoparticles near the ground state in an optical lattice. Opt. Exp. 30, 26716–26727 (2022).

    Article  Google Scholar 

  59. Hebestreit, E. Thermal Properties of Levitated Nanoparticles. PhD thesis, ETH Zürich (2017).

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation (SNF) through the NCCR-QSIT programme (grant no. 51NF40-160591; L.N.), European Union’s Horizon 2020 research and innovation programme under grant nos. 863132 (iQLev; L.N.) and 951234 (Q-Xtreme; L.N.), and ETH Grant ETH-47 20-2 (M.F.). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank our colleagues at the Photonics Laboratory at ETH Zürich, U. Delic and A. Omran, for valuable input and discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.V., Z.Z., J.P. and D.W. performed the measurements and analysed the data. J.V. and L.N. conceptualized the experiments with input from F.v.d.L and M.F. All the authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Jayadev Vijayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Klaus Hornberger, Tongcang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Detection schemes used in the experiment.

Light scattered by the particle in the forward direction is detected on the QPD which performs measurement-based cold damping of the particle motion. The back-scattered light is detected on photodiodes that perform parametric cooling of the particle motion. Additionally, the back-scattered light is also used in a heterodyne detection scheme that can overcomes the scalability limitations of the forward detection. At the moment, it is used as a tool to detect multiple particles as they are loaded into the chamber. A green laser is used to illuminate the particles for taking high resolution images, such as in Fig. 4a of the main text.

Extended Data Fig. 2 Linear feedback circuit.

A) A schematic of the cold damping feedback loop from the detected signal Vil to the spatial displacement of the tweezer Δy. B) Estimated tweezer displacement Δy (green circles) for different gains applied at the function generator GFG. The dashed line is a square root fit to the data.

Extended Data Fig. 3 Damping rates from ring-down and reheating measurements.

The feedback damping rate (green circles) is independent of pressure whereas the gas damping rate (red circles) increases with pressure. As in the main text, the gain is fixed to a low value of γfb = 2π × 42 Hz, corresponding to GFG = 5 kHz/V.

Extended Data Fig. 4 Calibration of feedback gain.

Due to differences in the detection efficiency of the motional signal from particle 1 (red circles) and 2 (blue circles), the gain applied at the function generator GFG is adjusted to get the same γfb. Dashed lines are a linear fit to the data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vijayan, J., Zhang, Z., Piotrowski, J. et al. Scalable all-optical cold damping of levitated nanoparticles. Nat. Nanotechnol. 18, 49–54 (2023). https://doi.org/10.1038/s41565-022-01254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01254-6

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research