Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient vortex generation at the nanoscale

Abstract

Control of the angular momentum of light at the nanoscale is critical for many applications of subwavelength photonics, such as high-capacity optical communications devices, super-resolution imaging and optical trapping. However, conventional approaches to generate optical vortices suffer from either low efficiency or relatively large device footprints. Here we show a new strategy for vortex generation at the nanoscale that surpasses single-pixel phase control. We reveal that interaction between neighbouring nanopillars of a meta-quadrumer can tailor both the intensity and phase of the transmitted light. Consequently, a subwavelength nanopillar quadrumer is sufficient to cover a 2lπ phase change, thus efficiently converting incident light into high-purity optical vortices with different topological charges l. Benefiting from the nanoscale footprint of the meta-quadrumers, we demonstrate high-density vortex beam arrays and high-dimensional information encryption, bringing a new degree of freedom to many designs of meta-devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of nanoscale vortex generator.
Fig. 2: Generation of optical vortices with l = 1.
Fig. 3: Generation of optical vortices with l = 2.
Fig. 4: Generation of dense vortex lattices.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the corresponding authors upon reasonable request.

Code availability

The code used to generate the inverse design in the main text is available on request from the corresponding authors.

References

  1. Bliokh, K. Y. et al. Roadmap on structured waves. J. Opt. 25, 103001 (2023).

    Article  Google Scholar 

  2. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior, and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  CAS  Google Scholar 

  4. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).

    Article  CAS  Google Scholar 

  5. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photon. 15, 253–262 (2021).

    Article  CAS  Google Scholar 

  6. Shen, Y. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 8, 90 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2015).

    Article  Google Scholar 

  9. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  PubMed  Google Scholar 

  10. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Vayalamkuzhi, P. et al. Direct patterning of vortex generators on a fiber tip sing a focused ion beam. Opt. Lett. 41, 2133–2136 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, Y., Zhang, J., Du, J. & Wang, J. Meta-facet fiber for twisting ultra-broadband light with high phase purity. Appl. Phys. Lett. 113, 061103 (2018).

    Article  Google Scholar 

  13. Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  CAS  Google Scholar 

  20. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).

    Article  CAS  Google Scholar 

  21. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Ren, H., Li, X., Zhang, Q. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Piccardo, M. et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photon. 16, 359–365 (2022).

    Article  CAS  Google Scholar 

  25. Zhang, H. et al. All‐dielectric metasurface‐enabled multiple vortex emissions. Adv. Mater. 34, 2109255 (2022).

    Article  CAS  Google Scholar 

  26. Jin, J. et al. Angular-multiplexed multichannel optical vortex arrays generators based on geometric metasurface. iScience 24, 102107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–8080 (2015).

    Article  CAS  Google Scholar 

  28. Rodriguez-Herrera, O. G., Lara, D., Bliokh, K. Y., Ostrovskaya, E. A. & Dainty, C. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010).

    Article  PubMed  Google Scholar 

  29. Bokor, N., Iketaki, Y., Watanabe, T. & Fujii, M. Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead. Opt. Express 13, 10440–10447 (2005).

    Article  PubMed  Google Scholar 

  30. Miroshnichenko, A. E. & Kivshar, Y. Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Shafier, F. et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 8, 95–99 (2013).

    Article  Google Scholar 

  32. Hopkins, B. et al. Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonance. ACS Photon. 2, 724–729 (2015).

    Article  CAS  Google Scholar 

  33. Ogut, B., Talebi, N., Vogelgesang, R., Sigle, W. & van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239–5244 (2012).

    Article  PubMed  Google Scholar 

  34. Tuz, V. R., Khardikov, V. V. & Kivshar, Y. All-dielectric resonant metasurfaces with a strong toroidal response. ACS Photon. 5, 1871–1876 (2018).

    Article  CAS  Google Scholar 

  35. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  PubMed  Google Scholar 

  36. Pu, M., Guo, Y., Li, X., Ma, X. & Luo, X. Revisitation of extraordinary Young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photon. 5, 3198–3204 (2018).

    Article  CAS  Google Scholar 

  37. Huang, Y. et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 6, 1801691 (2019).

    Article  Google Scholar 

  38. Khoram, E., Wu, Z., Qu, Y., Zhou, M. & Yu, Z. Graph neural networks for metasurface modeling. ACS Photon. 10, 892–899 (2023).

    CAS  Google Scholar 

  39. Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photon. 15, 77–90 (2021).

    Article  CAS  Google Scholar 

  41. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  CAS  Google Scholar 

  42. Liu, Y. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12, 5516 (2021).

    PubMed  PubMed Central  Google Scholar 

  44. Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Gorodetski, Y., Shitrit, N., Bretner, I., Kleiner, V. & Hasman, E. Observation of optical spin symmetry breaking in nanoapertures. Nano Lett. 9, 3016–2019 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bliokh, K. Y., Bliokh, Y. P., Savel’Ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

    Article  PubMed  Google Scholar 

  47. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, R. et al. Generation of perfect electron vortex beam with a customized beam size independent of orbital angular momentum. Nano Lett. 23, 2436–2441 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge W. Sha from Zhejiang University for helpful discussions on topology optimization. This research was supported by the National Key Research and Development Project of China (grant nos 2023YFB2806700, 2021YFA1400802 and 2022YFA1404700); the National Natural Science Foundation of China (grant nos 6233000076, 12334016, 12025402, 62125501, 11934012, 12261131500 and 92250302); the Shenzhen Fundamental Research Project (JCYJ20210324120402006, JCYJ20220818102218040 and GXWD20220817145518001); the Fundamental Research Funds for Central Universities (grant nos 2022FRRK030004, 2023FRFK03049 and HIT.BRET.2021009); and the Australian Research Council (grant no. DP210101292). G.Q. acknowledges financial support by the China National Postdoctoral Program for Innovative Talents (no. BX20230164) and China Postdoctoral Science Foundation (no. 2023M731828).

Author information

Authors and Affiliations

Authors

Contributions

Q.S., Y.K. and S.X. conceived the idea and supervised the research. Q.C. and G.Q. created the design. J.Y. contributed to the theoretical analysis. Yuhan Wang, Q.C., W.Y., Yujie Wang, S.X. and Z.Y. fabricated the samples. Q.C., Z.J. and G.Q. performed the experimental measurements. S.X., Y.K. and Q.S. analysed the results. All the authors discussed the contents and prepared the paper.

Corresponding authors

Correspondence to Qinghai Song, Yuri Kivshar or Shumin Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Xiangang Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Notes 1–10 and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data of all phase and intensity profiles in Fig. 1. Source data of purity weights and transmissions in the simulations.

Source Data Fig. 2

Source data of purity weights and transmissions in the experiments. Source data of the line-dot plot.

Source Data Fig. 3

Source data of purity weights and transmissions in the experiments. Source data of the line-dot plot.

Source Data Fig. 4

Unprocessed images from camera and scanning electron microscopy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Qu, G., Yin, J. et al. Highly efficient vortex generation at the nanoscale. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01636-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing