Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation

Abstract

In this Review we survey the molecular sieving behaviour of metal–organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic–organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer–filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the ‘drawbacks’ of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF–polymer blends, as they require improved polymer–filler interactions, such as cross-linking or surface functionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MOF and COF membranes in gas separation.
Fig. 2: Preparation of pure supported MOF membranes for gas separation.
Fig. 3: Scale-up-friendly MOF membrane synthesis.
Fig. 4: Preparation of supported COF membranes.
Fig. 5: Types of structural response encountered in ZIFs.
Fig. 6: Next-generation MMMs.

Similar content being viewed by others

References

  1. Scholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  2. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    Article  CAS  Google Scholar 

  3. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  4. Chui, S. S.-Y. et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]. Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  5. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  6. Arnold, M. et al. Oriented crystallization on supports and anisotropic mass transport of the metal–organic framework manganese formate. Eur. J. Inorg. Chem. 60–64 (2007).

  7. Gascon, J., Aguado, S. & Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008).

    Article  CAS  Google Scholar 

  8. Liu, Y. et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009).

    Article  CAS  Google Scholar 

  9. Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).

    Article  CAS  Google Scholar 

  10. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  11. Li, Y. S. et al. Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 122, 558–561 (2010).

    Article  Google Scholar 

  12. Huang, A., Dou, W. & Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 132, 15562–15564 (2010).

    Article  CAS  Google Scholar 

  13. Keskin, S. & Sholl, D. S. Screening metal−organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).

    Article  CAS  Google Scholar 

  14. Krishna, R. & van Baten, J. M. In silico screening of metal–organic frameworks in separation applications. Phys. Chem. Chem. Phys. 13, 10593–10616 (2011).

    Article  CAS  Google Scholar 

  15. Bae, T. H. et al. A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals. Angew. Chem. Int. Ed. 122, 10059–10062 (2010).

    Article  Google Scholar 

  16. Keskin, S. & Sholl, D. S. Selecting metal–organic frameworks as enabling materials in mixed-matrix membranes for high-efficiency natural gas purification. Energy Environ. Sci. 3, 343–351 (2010).

    Article  CAS  Google Scholar 

  17. Ranjan, R. & Tsapatsis, M. Microporous metal–organic framework membrane on porous support using the seeded growth method. Chem. Mater. 21, 4920–4924 (2009).

    Article  CAS  Google Scholar 

  18. Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    Article  CAS  Google Scholar 

  19. Kwon, H. Y. & Jeong, H.-K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013).

    Article  CAS  Google Scholar 

  20. Hu, Y. et al. Metal–organic framework membranes fabricated via reactive seeding. Chem. Commun. 47, 737–739 (2011).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 136, 14353–14356 (2014).

    Article  CAS  Google Scholar 

  22. Pan, Y., Tao, L., Lestari, G. & Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390391, 93–98 (2012).

    Article  CAS  Google Scholar 

  23. Zhou, S. et al. Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882–891 (2021).

    Article  CAS  Google Scholar 

  24. Knebel, A. et al. Solution processable metal–organic frameworks for mixed-matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    Article  CAS  Google Scholar 

  25. Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    Article  CAS  Google Scholar 

  26. Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).

    Article  CAS  Google Scholar 

  27. Seoane, B. et al. Metal–organic framework based mixed-matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    Article  CAS  Google Scholar 

  28. Cussler, E. L. Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990).

    Article  CAS  Google Scholar 

  29. Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  Google Scholar 

  30. Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    Article  CAS  Google Scholar 

  31. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  Google Scholar 

  32. Fan, H. W. et al. Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    Article  CAS  Google Scholar 

  33. Knebel, A. et al. Defibrillation of soft porous metal–organic frameworks with electric fields. Science 358, 347–351 (2017).

    Article  CAS  Google Scholar 

  34. Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    Article  CAS  Google Scholar 

  35. He, G. et al. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. Adv. Funct. Mater. 28, 1707427 (2018).

    Article  CAS  Google Scholar 

  36. Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal–organic framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).

    Article  CAS  Google Scholar 

  37. Hou, Q. et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 58, 327–331 (2019).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).

    Article  CAS  Google Scholar 

  39. Miao, Y. et al. Electron beam induced modification of ZIF-8 membrane permeation properties. Chem. Commun. 57, 5250–5253 (2021).

    Article  CAS  Google Scholar 

  40. Zhao, M. et al. A highly selective supramolecule array membrane made of zero dimensional molecules for gas separation. Angew. Chem. Int. Ed. 60, 20977–20983 (2021).

    Article  CAS  Google Scholar 

  41. Lee, M. J., Kwon, H. T. & Jeong, H.-K. Defect-dependent stability of highly propylene-selective zeolitic-imidazolate framework ZIF-8 membranes. J. Membr. Sci. 259, 105–113 (2017).

    Article  CAS  Google Scholar 

  42. Kwon, H. T. et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015).

    Article  CAS  Google Scholar 

  43. Zhang, X. et al. Electrochemically assisted interfacial growth of MOF membranes. Matter 1, 1285–1292 (2019).

    Article  Google Scholar 

  44. Shu, L. et al. Flexible soft-solid metal–organic framework composite membranes for H2/CO2 separation. Angew. Chem. Int. Ed. 61, e202117577 (2022).

    Article  CAS  Google Scholar 

  45. Van Assche, T. R. C. et al. Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous Mesoporous Mater. 158, 209–213 (2012).

    Article  CAS  Google Scholar 

  46. Müller, K. et al. Defects as color centers: the apparent color of metal–organic frameworks containing Cu2+-based paddle-wheel units. ACS Appl. Mater. Interfaces 9, 37463–37467 (2017).

    Article  CAS  Google Scholar 

  47. Nan, J., Dong, X., Wang, W. & Jin, W. Formation mechanism of metal–organic framework membranes derived from reactive seeding approach. Microporous Mesoporous Mater. 155, 90–98 (2012).

    Article  CAS  Google Scholar 

  48. Knebel, A. et al. Comparative study of MIL-96(Al) as continuous metal–organic frameworks layer and mixed-matrix membrane. ACS Appl. Mater. Interfaces 8, 7536–7544 (2016).

    Article  CAS  Google Scholar 

  49. Knebel, A. et al. Hierarchical nanostructures of metal–organic frameworks applied in gas separating ZIF-8-on-ZIF-67 membranes. Chem. Eur. J. 24, 5728–5733 (2018).

    Article  CAS  Google Scholar 

  50. Hurrle, S. et al. Sprayable, large-area metal–organic framework films and membranes of varying thickness. Chem. Eur. J. 23, 2233–2475 (2017).

    Article  CAS  Google Scholar 

  51. Zhang, X. et al. Electrochemical deposition of metal–organic framework films and their applications. J. Mater. Chem. A 8, 7569–7587 (2020).

    Article  CAS  Google Scholar 

  52. Eum, K. et al. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: efficient propylene separation at elevated pressures. ACS Appl. Mater. Interfaces 8, 25337–25342 (2016).

    Article  CAS  Google Scholar 

  53. Eum, K. et al. ZIF-8 membrane separation performance tuning by vapor phase ligand treatment. Angew. Chem. Int. Ed. 58, 16390–16394 (2019).

    Article  CAS  Google Scholar 

  54. Bisbey, R. P., DeBlase, C. R., Smith, B. J. & Dichtel, W. R. Two-dimensional covalent organic framework thin films grown in flow. J. Am. Chem. Soc. 138, 11433–11436 (2016).

    Article  CAS  Google Scholar 

  55. He, G., Zhang, R. & Jiang, Z. Engineering covalent organic framework membranes. Acc. Mater. Res. 2, 630–643 (2021).

    Article  CAS  Google Scholar 

  56. Geng, K. et al. Covalent organic frameworks: design, synthesis and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  Google Scholar 

  57. Haase, F. & Lotsch, B. V. Solving the trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).

    Article  CAS  Google Scholar 

  58. Ma, X. & Scott, T. F. Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks. Commun. Chem. 1, 98 (2018).

    Article  Google Scholar 

  59. Lu, H. et al. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem. Commun. 51, 15562–15565 (2015).

    Article  CAS  Google Scholar 

  60. Segura, J. L., Mancheno, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).

    Article  CAS  Google Scholar 

  61. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  Google Scholar 

  62. Li, X. et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9, 2998 (2018).

    Article  CAS  Google Scholar 

  63. Shan, M. et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem. Eur. J. 22, 14467–14470 (2016).

    Article  CAS  Google Scholar 

  64. Liu, J. et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).

    Article  CAS  Google Scholar 

  65. Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).

    Article  CAS  Google Scholar 

  66. Castano, I. et al. Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks. ACS Cent. Sci. 5, 1892–1899 (2019).

    Article  CAS  Google Scholar 

  67. Auras, F. et al. Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks. J. Am. Chem. Soc. 138, 16703–16710 (2016).

    Article  CAS  Google Scholar 

  68. Li, Y. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11, 599 (2020).

    Article  CAS  Google Scholar 

  69. Tong, M. et al. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. J. Mater. Chem. A 4, 124–131 (2016).

    Article  CAS  Google Scholar 

  70. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  CAS  Google Scholar 

  71. Wang, P. et al. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angew. Chem. Int. Ed. 60, 19047–19052 (2021).

    Article  CAS  Google Scholar 

  72. Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    Article  CAS  Google Scholar 

  73. Fan, H. et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 142, 6872–6877 (2020).

    Article  CAS  Google Scholar 

  74. Fenton, J. L. et al. Polycrystalline covalent organic framework films act as adsorbents, not membranes. J. Am. Chem. Soc. 143, 1466–1473 (2021).

    Article  CAS  Google Scholar 

  75. Fan, H. et al. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).

    Article  CAS  Google Scholar 

  76. Bon, V. et al. Massive pressure amplification by stimulated contraction of mesoporous frameworks. Angew. Chem. Int. Ed. 133, 11841–11845 (2021).

    Article  Google Scholar 

  77. Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    Article  CAS  Google Scholar 

  78. Moggach, S. A., Bennett, T. D. & Cheetham, A. K. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009).

    Article  CAS  Google Scholar 

  79. Ryder, M. R. et al. Identifying the role of terahertz vibrations in metal–organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).

    Article  CAS  Google Scholar 

  80. Peralta, D. et al. The separation of xylene isomers by ZIF-8: a demonstration of the extraordinary flexibility of the ZIF-8 framework. Microporous Mesoporous Mater. 173, 1–5 (2013).

    Article  CAS  Google Scholar 

  81. Iacomi, P. & Maurin, G. ResponZIF structures: zeolitic imidazolate frameworks as stimuli-responsive materials. ACS Appl. Mater. Interfaces 13, 50602–50642 (2021).

    Article  CAS  Google Scholar 

  82. Ghoufi, A., Benhamed, K., Boukli-Hacene, L. & Maurin, G. Electrically induced breathing of the MIL- 53(Cr) metal–organic framework. ACS Cent. Sci. 3, 394–398 (2017).

    Article  CAS  Google Scholar 

  83. Lyu, L. et al. C3H6/C3H8 adsorption behavior study of stiffened ZIF-8 prepared under an electric field. Chem. Ing. Tech. 94, 119–127 (2022).

    Article  CAS  Google Scholar 

  84. Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    Article  CAS  Google Scholar 

  85. Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article  CAS  Google Scholar 

  86. Nozari, V. et al. Ionic liquid facilitated melting of the metal–organic framework ZIF-8. Nat. Commun. 12, 5703 (2021).

    Article  CAS  Google Scholar 

  87. Frentzel-Beyme, L. et al. Porous purple glass—a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J. Mater. Chem. A 7, 985–990 (2019).

    Article  CAS  Google Scholar 

  88. Knebel, A. et al. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater. 29, 3111–3117 (2017).

    Article  CAS  Google Scholar 

  89. Brandon, J., Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).

    Article  CAS  Google Scholar 

  90. Fan, S. et al. Photogated proton conductivity of ZIF-8 membranes co-modified with graphene quantum dots and polystyrene sulfonate. Sci. China Mater. 64, 1997–2007 (2021).

    Article  CAS  Google Scholar 

  91. Prasetya, N., Teck, A. A. & Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 mixed-matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation. Sci. Rep. 8, 2944 (2018).

    Article  CAS  Google Scholar 

  92. Koros, W. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  93. Seoane, B. et al. Metal–organic framework based mixed-matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    Article  CAS  Google Scholar 

  94. Etxeberria-Benavides, M. et al. High performance mixed-matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 550, 198–207 (2018).

    Article  CAS  Google Scholar 

  95. Schneider, D., Kapteijn, F. & Valiullin, R. Transport properties of mixed-matrix membranes: a kinetic Monte Carlo study. Phys. Rev. Appl. 12, 044034 (2019).

    Article  CAS  Google Scholar 

  96. Diestel, L. et al. Matrimid-based mixed-matrix membranes: interpretation and correlation of experimental findings for zeolitic imidazolate frameworks as fillers in H2/CO2 separation. Ind. Eng. Chem. Res. 54, 1103–1112 (2015).

    Article  CAS  Google Scholar 

  97. Friebe, S. et al. NH2-MIL-125 as membrane for carbon dioxide sequestration: thin supported MOF layers contra mixed-matrix-membranes. J. Membr. Sci. 516, 185–193 (2016).

    Article  CAS  Google Scholar 

  98. Hossain, I. et al. Cross-linked mixed-matrix membranes using functionalized UiO-66-NH2 into PEG/PPG–PDMS-based rubbery polymer for efficient CO2 separation. ACS Appl. Mater. Interfaces 12, 57916–57931 (2020).

    Article  CAS  Google Scholar 

  99. Wang, Z. et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J. Membr. Sci. 633, 119397 (2021).

    Article  CAS  Google Scholar 

  100. Kumar, P. et al. One-dimensional intergrowth in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nat. Mater. 19, 443–449 (2020).

    Article  CAS  Google Scholar 

  101. Dakhchoune, M. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20, 362–369 (2021).

    Article  CAS  Google Scholar 

  102. Wu, S. et al. High-throughput droplet microfluidic synthesis of hierarchical metal–organic framework nanosheet microcapsules. Nano Res. 12, 2736–2742 (2019).

    Article  CAS  Google Scholar 

  103. Sabetghadam, A. et al. Thin mixed-matrix and dual-layer membranes containing metal–organic framework nanosheets and PolyactiveTM for CO2 capture. J. Membr. Sci. 570–571, 226–235 (2019).

    Article  CAS  Google Scholar 

  104. Caro, J. & Kärger, J. From computer design to gas separation. Nat. Mater. 19, 374–375 (2020).

    Article  CAS  Google Scholar 

  105. Sabetghadam, A. et al. Metal–organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv. Funct. Mat. 26, 3154–3163 (2016).

    Article  CAS  Google Scholar 

  106. Pustovarenko, A. et al. Nanosheets of nonlayered aluminum metal–organic frameworks through a surfactant-assisted method. Adv. Mater. 30, 1707234 (2018).

    Article  CAS  Google Scholar 

  107. Zou, C. et al. Mechanical synthesis of COF nanosheet cluster and its mixed-matrix membrane for efficient CO2 removal. ACS Appl. Mater. Interfaces 9, 29093–29100 (2017).

    Article  CAS  Google Scholar 

  108. Chen, Y. et al. Mixed-matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 573, 97–106 (2019).

    Article  CAS  Google Scholar 

  109. Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal–organic framework. Phys. Rev. Lett. 118, 255502 (2017).

    Article  Google Scholar 

  110. Jayachandrababu, K. C. et al. Structure elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling. J. Am. Chem. Soc. 138, 7325–7336 (2016).

    Article  CAS  Google Scholar 

  111. Hao, J. et al. Mechanistic study on thermally induced lattice stiffening of ZIF-8. Chem. Mater. 33, 4035–4044 (2021).

    Article  CAS  Google Scholar 

  112. Evans, J. D. et al. Feasibility of mixed-matrix membrane gas separations employing porous organic cages. J. Phys. Chem. C 118, 1523–1529 (2014).

    Article  CAS  Google Scholar 

  113. Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009).

    Article  CAS  Google Scholar 

  114. Liu, X. et al. Molecular-scale hybrid membranes derived from metal–organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 10, 21381–21389 (2018).

    Article  CAS  Google Scholar 

  115. Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099–3118 (2012).

    Article  CAS  Google Scholar 

  116. Keskin, S. & Scholl, D. S. Screening metal−organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).

    Article  CAS  Google Scholar 

  117. Altintas, C. et al. Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure–performance relations. J. Mater. Chem. A 6, 5836–5847 (2018).

    Article  CAS  Google Scholar 

  118. Altundal, O. F., Altintas, C. & Keskin, S. Can COFs replace MOFs in flue gas separation? High-throughput computational screening of COFs for CO2/N2 separation. J. Mater. Chem. A 8, 14609–14623 (2020).

    Article  CAS  Google Scholar 

  119. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  120. Babu, D. J. et al. Restricting lattice flexibility in polycrystalline metal–organic framework membranes for carbon capture. Adv. Mat. 31, 1900855 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.K. acknowledges funding through the Carl Zeiss Foundation within the CZS Breakthroughs Program. J.C. is grateful for funding from the German Science Foundation (DFG), within the Priority Program SPP 1928/2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Knebel or J. Caro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knebel, A., Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022). https://doi.org/10.1038/s41565-022-01168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01168-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing