Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot

Abstract

The availability of colloidal quantum dots with highly efficient, fast and ‘non-blinking’ near-infrared emission would benefit numerous applications, from advanced optical communication and quantum networks to biomedical diagnostics. Here, we report high-quality near-infrared emitters that are based on well known CdSe/CdS heterostructures. By incorporating an HgS interlayer at the quantum dot core/shell interface, we convert normally visible emitters into highly efficient near-infrared fluorophores. Employing thermodynamically controlled sequential deposition of metal and chalcogen ions, we achieve atomic-level precision in defining the thickness of the HgS interlayer (H). This manifests in ‘quantized’ jumps of the photoluminescence spectrum when H changes in discrete, atomic steps. The synthesized structures show highly efficient photoluminescence, tunable from 700 to 1,370 nm, and fast radiative rates of ~1/60 ns−1. The emission from individual CdSe/HgS/CdS colloidal quantum dots is virtually blinking free and exhibits nearly perfect single-photon purity. In addition, when incorporated into a light-emitting-diode architecture, these quantum dots demonstrate strong electroluminescence with a sub-bandgap turn-on voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and structural characterization of CdSe/HgS/CdS CQDs.
Fig. 2: Emission spectra and the structure of electronic states of CdSe/HgS/CdS CQDs.
Fig. 3: Room-temperature light emission from individual CdSe/HgS/CdS CQDs.
Fig. 4: CdSe/HgS/CdS CQD LEDs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request. Source data are provided with this paper.

References

  1. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  2. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  CAS  Google Scholar 

  3. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  CAS  Google Scholar 

  4. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  Google Scholar 

  5. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  6. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  7. Meinardi, F., Bruni, F. & Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2, 17072 (2017).

    Article  CAS  Google Scholar 

  8. Wu, K., Li, H. & Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photon. 12, 105–110 (2018).

    Article  CAS  Google Scholar 

  9. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  CAS  Google Scholar 

  10. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  11. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  12. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  13. Pietryga, J. M. et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 4879–4885 (2008).

    Article  CAS  Google Scholar 

  14. Moreels, I. et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5, 2004–2012 (2011).

    Article  CAS  Google Scholar 

  15. Bischof, T. S., Correa, R. E., Rosenberg, D., Dauler, E. A. & Bawendi, M. G. Measurement of emission lifetime dynamics and biexciton emission quantum yield of individual InAs colloidal nanocrystals. Nano Lett. 14, 6787–6791 (2014).

    Article  CAS  Google Scholar 

  16. Srivastava, V., Dunietz, E., Kamysbayev, V., Anderson, J. S. & Talapin, D. V. Monodisperse InAs quantum dots from aminoarsine precursors: understanding the role of reducing agent. Chem. Mater. 30, 3623–3627 (2018).

    Article  CAS  Google Scholar 

  17. Sarkar, S. et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy. J. Am. Chem. Soc. 142, 3449–3462 (2020).

    Article  CAS  Google Scholar 

  18. Abdelazim, N. M. et al. Room temperature synthesis of HgTe quantum dots in an aprotic solvent realizing high photoluminescence quantum yields in the infrared. Chem. Mater. 29, 7859–7867 (2017).

    Article  CAS  Google Scholar 

  19. Izquierdo, E. et al. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 138, 10496–10501 (2016).

    Article  CAS  Google Scholar 

  20. Smith, A. M. & Nie, S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc. 133, 24–26 (2011).

    Article  CAS  Google Scholar 

  21. Bertram, S. N. et al. Single nanocrystal spectroscopy of shortwave infrared emitters. ACS Nano 13, 1042–1049 (2019).

    CAS  Google Scholar 

  22. Hu, Z. et al. Intrinsic exciton photophysics of PbS quantum dots revealed by low-temperature single nanocrystal spectroscopy. Nano Lett. 19, 8519–8525 (2019).

    Article  CAS  Google Scholar 

  23. Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  Google Scholar 

  24. Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 139, 16556–16567 (2017).

    Article  CAS  Google Scholar 

  25. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  26. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  Google Scholar 

  27. Jeong, K. S., Deng, Z., Keuleyan, S., Liu, H. & Guyot-Sionnest, P. Air-stable n-doped colloidal HgS quantum dots. J. Phys. Chem. Lett. 5, 1139–1143 (2014).

    Article  CAS  Google Scholar 

  28. Shen, G. & Guyot-Sionnest, P. HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J. Phys. Chem. C 120, 11744–11753 (2016).

    Article  CAS  Google Scholar 

  29. Eychmüller, A., Mews, A. & Weller, H. A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208, 59–62 (1993).

    Article  Google Scholar 

  30. Schooss, D., Mews, A., Eychmuller, A. & Weller, H. Quantum-dot quantum well CdS/HgS/CdS: theory and experiment. Phys. Rev. B 49, 17072–17078 (1994).

    Article  CAS  Google Scholar 

  31. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  CAS  Google Scholar 

  32. Ithurria, S. & Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134, 18585–18590 (2012).

    Article  CAS  Google Scholar 

  33. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  Google Scholar 

  34. Potter, R. W. & Barnes, H. L. Phase relations in the binary Hg–S. Am. Mineral. 63, 1143–1152 (1978).

    CAS  Google Scholar 

  35. Mews, A., Eychmueller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934–941 (1994).

    Article  CAS  Google Scholar 

  36. Izquierdo, E. et al. Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap. Chem. Mater. 30, 4065–4072 (2018).

    Article  CAS  Google Scholar 

  37. Hazarika, A. et al. Colloidal atomic layer deposition with stationary reactant phases enables precise synthesis of “digital” II–VI nano-heterostructures with exquisite control of confinement and strain. J. Am. Chem. Soc. 141, 13487–13496 (2019).

    Article  CAS  Google Scholar 

  38. Lin, Q. et al. Design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared. ACS Nano 9, 539–547 (2015).

    Article  CAS  Google Scholar 

  39. Sayevich, V. et al. Chloride and indium-chloride-complex inorganic ligands for efficient stabilization of nanocrystals in solution and doping of nanocrystal solids. Adv. Funct. Mater. 26, 2163–2175 (2016).

    Article  CAS  Google Scholar 

  40. Pinchetti, V. et al. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 10, 6877–6887 (2016).

    Article  CAS  Google Scholar 

  41. Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).

    Article  Google Scholar 

  42. Jeong, B. G. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297–9305 (2016).

    Article  CAS  Google Scholar 

  43. Piryatinski, A., Ivanov, S. A., Tretiak, S. & Klimov, V. I. Effect of quantum and dielectric confinement on the exciton–exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7, 108–115 (2007).

    Article  CAS  Google Scholar 

  44. Hanson, C. J. et al. Giant PbSe/CdSe/CdSe quantum dots: crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals. J. Am. Chem. Soc. 139, 11081–11088 (2017).

    Article  CAS  Google Scholar 

  45. Chen, J.-S., Zang, H., Li, M. & Cotlet, M. Hot excitons are responsible for increasing photoluminescence blinking activity in single lead sulfide/cadmium sulfide nanocrystals. Chem. Commun. 54, 495–498 (2018).

    Article  CAS  Google Scholar 

  46. Zang, H., Routh, P. K., Meng, Q. & Cotlet, M. Electron transfer dynamics from single near infrared emitting lead sulfide–cadmium sulfide nanocrystals to titanium dioxide. Nanoscale 9, 14664–14671 (2017).

    Article  CAS  Google Scholar 

  47. Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article  CAS  Google Scholar 

  48. Park, Y.-S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    Article  CAS  Google Scholar 

  49. Kozlov, O. V. et al. Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    Article  CAS  Google Scholar 

  50. Lim, J., Park, Y. S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article  CAS  Google Scholar 

  51. Park, Y. S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  CAS  Google Scholar 

  52. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  CAS  Google Scholar 

  53. Pandey, A. K. & Nunzi, J. M. Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage. Adv. Mater. 19, 3613–3617 (2007).

    Article  CAS  Google Scholar 

  54. Xiang, C., Peng, C., Chen, Y. & So, F. Origin of sub-bandgap electroluminescence in organic light-emitting diodes. Small 11, 5439–5443 (2015).

    Article  CAS  Google Scholar 

  55. Luo, H. et al. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 13, 8229–8236 (2019).

    Article  CAS  Google Scholar 

  56. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  CAS  Google Scholar 

  57. Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    Article  CAS  Google Scholar 

  58. Lim, J., Park, Y.-S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article  CAS  Google Scholar 

  59. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  60. Chen, O. et al. Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem. Int. Ed. 47, 8638–8641 (2008).

    Article  CAS  Google Scholar 

  61. Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    Article  CAS  Google Scholar 

  62. Sayevich, V. et al. Hybrid n-butylamine-based ligands for switching the colloidal solubility and regimentation of inorganic-capped nanocrystals. ACS Nano 11, 1559–1571 (2017).

    Article  CAS  Google Scholar 

  63. Jasieniak, J., Smith, L., van Embden, J., Mulvaney, P. & Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

    Article  CAS  Google Scholar 

  64. Slejko, E. A. et al. Precise engineering of nanocrystal shells via colloidal atomic layer deposition. Chem. Mater. 29, 8111–8118 (2017).

    Article  CAS  Google Scholar 

  65. Boldt, K., Kirkwood, N., Beane, G. A. & Mulvaney, P. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1–xS nanoparticles by in situ alloying. Chem. Mater. 25, 4731–4738 (2013).

    Article  CAS  Google Scholar 

  66. Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019).

    Article  CAS  Google Scholar 

  67. Kim, J.-H. et al. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 27, 197–204 (2015).

    Article  CAS  Google Scholar 

  68. Cirloganu, C. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 5, 4148 (2014).

    Article  CAS  Google Scholar 

  69. Comas, F. & Studart, N. Electron–phonon interaction in quantum-dot/quantum-well semiconductor heterostructures. Phys. Rev. B 69, 235321 (2004).

    Article  Google Scholar 

  70. Royo, M., Planelles, J. & Pi, M. Effective mass and dielectric constant mismatch effects in spherical multishell quantum dots. Phys. Rev. B 75, 033302 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Syntheses of the CdSe/HgS/CdS CQDs, modelling of their electronic states, single-dot spectroscopic studies and research into CQD LEDs were supported by the Laboratory Directed Research and Development (LDRD) programme at Los Alamos National Laboratory under project 20200213DR. Time-resolved optical-spectroscopy studies of the CdSe/HgS/CdS CQDs were supported by the Solar Photochemistry Program of the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. We thank H. Jin for TEM measurements and K. Velizhanin for help with the code used in calculations of electronic states.

Author information

Authors and Affiliations

Authors

Contributions

V.I.K. conceived the idea and initiated the study. V.S. developed the synthesis of CdSe/HgS/CdS CQDs and fabricated CQD samples for this work. Z.L.R. conducted modelling of electronic states. Y.K., Z.L.R. and Y.-S.P. conducted single-dot spectroscopic measurements and analysed the data. O.V.K. performed transient absorption measurements. H.J. fabricated LEDs and measured device characteristics. T.N. conducted TEM and XRD measurements. V.I.K. and V.S. wrote the manuscript with input from the other authors.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Sohee Jeong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Discussion, Figs. 1–12, Tables 1–3 and refs. 1–4.

Source data

Source Data Fig. 1

c, XRD patterns of CdSeWZ/mHgS/2CdS CQDs as a function of m. d, Evolution of size distribution of CdSe/mHgS CQDs for m = 0–3. e, Gaussian fits of CdSe/mHgS CQD size distributions for m = 0–3.

Source Data Fig. 2

a, Evolution of PL spectra of CdSeWZ/mHgS/2CdS CQDs (m = 1–3). b, Two levels of control of the PL spectral energy of CdSe/HgS/CdS CQDs. c, Evolution of absorption and PL spectra of CdSeZB/1HgS/nCdS (n = 0, 2, 6). d, CB and VB confinement potentials in CdSe/2HgS/2CdS CQDs. e, The measured 1S-peak absorption, PL energies and calculated 1Sh–1Se transition energy of the CdSeZB/mHgS/2CdS CQDs. f, The measured and the calculated 1Se–1Sh transition energies.

Source Data Fig. 3

a, PL intensity versus time for CdSe/1HgS/2CdS. b, PL intensity versus time for CdSe/1HgS/6CdS. c, Single-exciton PL dynamics of a CdSe/1HgS/6CdS CQD. d, A time-dependent g(2) function. e, A CQD ensemble and single-dot PL spectra.

Source Data Fig. 4

b, Current/radiance of LED. c, EQE/PCE of LED.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevich, V., Robinson, Z.L., Kim, Y. et al. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 16, 673–679 (2021). https://doi.org/10.1038/s41565-021-00871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00871-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing