Analysis

A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues

Received:
Accepted:
Published:

Abstract

Among a wide range of possible applications of nanotechnology in agriculture, there has been a particular interest in developing novel nanoagrochemicals. While some concerns have been expressed regarding altered risk profile of the new products, many foresee a great potential to support the necessary increase in global food production in a sustainable way. A critical evaluation of nanoagrochemicals against conventional analogues is essential to assess the associated benefits and risks. In this assessment, recent literature was critically analysed to determine the extent to which nanoagrochemicals differ from conventional products. Our analysis was based on 78 published papers and shows that median gain in efficacy relative to conventional products is about 20–30%. Environmental fate of agrochemicals can be altered by nanoformulations, but changes may not necessarily translate in a reduction of the environmental impact. Many studies lacked nano-specific quality assurance and adequate controls. Currently, there is no comprehensive study in the literature that evaluates efficacy and environmental impact of nanoagrochemicals under field conditions. This is a crucial knowledge gap and more work will thus be necessary for a sound evaluation of the benefits and new risks that nanoagrochemicals represent relative to existing products.

  • Subscribe to Nature Nanotechnology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    World Population Prospects: Key Findings and Advance Tables (United Nations, Department of Economic and Social Affairs, 2015); https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf

  2. 2.

    Alexandratos, N. & Bruinsma, J. World Agriculture: Towards 2015/2030: The 2012 Revision (Food and Agricultural Organization of the United Nations, 2012); http://www.fao.org/docrep/016/ap106e/ap106e.pdf

  3. 3.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

  4. 4.

    Yin, J., Wang, Y. & Gilbertson, L. M. Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environ. Sci. Nano 5, 11–26 (2018).

  5. 5.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

  6. 6.

    Kah, M., Beulke, S., Tiede, K. & Hofmann, T. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 43, 1823–1867 (2013).

  7. 7.

    Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60, 9781–9792 (2012).

  8. 8.

    Kah, M. & Hofmann, T. Nanopesticide research: current trends and future priorities. Environ. Int. 63, 224–235 (2014).

  9. 9.

    Walker, G. W. et al. Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b02373 (2017).

  10. 10.

    Li, Z.-Z. et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag. Sci. 63, 241–246 (2007).

  11. 11.

    Wibowo, D., Zhao, C.-X., Peters, B. C. & Middelberg, A. P. J. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 62, 12504–12511 (2014).

  12. 12.

    Song, M.-R. et al. Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J. Pestic. Sci. 37, 258–260 (2012).

  13. 13.

    Ao, M. et al. Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24, 35601–35601 (2013).

  14. 14.

    Cao, L. et al. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b01957 (2017).

  15. 15.

    Sarlak, N., Taherifar, A. & Salehi, F. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J. Agric. Food Chem. 62, 4833–4838 (2014).

  16. 16.

    Sharma, S., Singh, S., Ganguli, A. K. & Shanmugam, V. Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon 115, 781–790 (2017).

  17. 17.

    Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2, 1–12 (2009).

  18. 18.

    Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7, 229–252 (2005).

  19. 19.

    United Nations, Human Right Council Report of the Special Rapporteur on the Right to Food (A/HRC/34/48) (ReliefWeb, 2017); https://reliefweb.int/report/world/report-special-rapporteur-right-food-ahrc3448

  20. 20.

    Guidelines on Efficacy Evaluation for the Registration of Plant Protection Products (Food and Agricultural Organization of the United Nations, 2006); http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Efficacy.pdf

  21. 21.

    Efficacy Experimental Design and Analysis (Australian Pesticides and Veterinary Medicines Authority, 2013); https://apvma.gov.au/node/347

  22. 22.

    de Oliveira, J. L. et al. Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J. Agric. Food Chem. 63, 422–432 (2015).

  23. 23.

    Grillo, R. et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J. Hazard. Mater. 278, 163–171 (2014).

  24. 24.

    Anjali, C. H. et al. Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol. Environ. Saf. 73, 1932–1936 (2010).

  25. 25.

    Saini, P., Gopal, M., Kumar, R. & Srivastava, C. Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J. Environ. Sci. Health Part B 49, 344–351 (2014).

  26. 26.

    Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C. & Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 101, 1061–1067 (2014).

  27. 27.

    Memarizadeh, N., Ghadamyari, M., Adeli, M. & Talebi, K. Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environ. Saf. 107, 77–83 (2014).

  28. 28.

    Balaji, A. P. B. et al. The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull. Environ. Contam. Toxicol. 95, 734–739 (2015).

  29. 29.

    Pankaj, Shakil, N. A., Kumar, J., Singh, M. K. & Singh, K. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J. Environ. Sci. Health Part B 47, 520–528 (2012).

  30. 30.

    Sasson, Y., Levy-Ruso, G., Toledano, O. & Ishaaya, I. in Insecticides Design Using Advanced Technologies 1–39 (Springer, Berlin, Heidelberg, 2007).

  31. 31.

    Sandhya, Kumar, S., Kumar, D. & Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 24, 926–937 (2017).

  32. 32.

    Loha, K. M. et al. Release kinetics of β-cyfluthrin from its encapsulated formulations in water. J. Environ. Sci. Health Part B 46, 201–206 (2011).

  33. 33.

    Graham, J. H. et al. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis. 100, 2442–2447 (2016).

  34. 34.

    Carpenter, S. A star performer–Priostar® dendrimers. Grainews (6 September 2016); http://news.agropages.com/News/NewsDetail---19235.htm

  35. 35.

    Adak, T., Kumar, J., Shakil, N. A. & Walia, S. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J. Environ. Sci. Health Part B 47, 217–225 (2012).

  36. 36.

    Kaushik, P. et al. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J. Environ. Sci. Health B 48, 677–685 (2013).

  37. 37.

    Kah, M. et al. Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ. Sci. Pollut. Res. 21, 11699–11707 (2014).

  38. 38.

    Kah, M., Weniger, A.-K. & Hofmann, T. Impacts of (nano)formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ. Sci. Technol. 50, 10960–10967 (2016).

  39. 39.

    Shang, Q., Shi, Y., Zhang, Y., Zheng, T. & Shi, H. Pesticide‐conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym. Adv. Technol. 24, 137–143 (2013).

  40. 40.

    Liang, J. et al. Bioinspired development of P(St–MAA)–avermectin nanoparticles with high affinity for foliage to enhance folia retention. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.7b01998 (2017).

  41. 41.

    Nguyen, H. M., Hwang, I.-C., Park, J.-W. & Park, H.-J. Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag. Sci. 68, 1062–1068 (2012).

  42. 42.

    Song, S. et al. Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf. Physicochem. Eng. Asp. 350, 57–62 (2009).

  43. 43.

    Guan, H., Chi, D., Yu, J. & Li, H. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot. 29, 942–946 (2010).

  44. 44.

    Kah, M., Beulke, S. & Brown, C. D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem. 55, 4487–4492 (2007).

  45. 45.

    World Agriculture: Towards 2015/2030 (Food and Agricultural Organization of the United Nations, 2002); http://www.fao.org/docrep/004/y3557e/y3557e11.htm

  46. 46.

    Liu, R. & Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015).

  47. 47.

    Feizi, H., Kamali, M., Jafari, L. & Rezvani Moghaddam, P. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91, 506–511 (2013).

  48. 48.

    Mukherjee, A. et al. Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016).

  49. 49.

    Liu, R. & Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4, 5686 (2014).

  50. 50.

    Benício, L. P. F. et al. Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain. Chem. Eng. 5, 399–409 (2017).

  51. 51.

    Abdel-Aziz, H. M. M., Hasaneen, M. N. A. & Omer, A. M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 14, (2016).

  52. 52.

    Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C. & Rao, A. S. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr. 38, 1505–1515 (2015).

  53. 53.

    Joseph, S. et al. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).

  54. 54.

    Nutrient Management Handbook (International Fertilizer Association, 2016); https://www.fertilizer.org/images/Library_Downloads/2016_Nutrient_Management_Handbook.pdf

  55. 55.

    Fertilizer Use Efficiency (United Nations, Department of Economic and Social Affairs, 2007); http://www.un.org/esa/sustdev/natlinfo/indicators/methodology_sheets/land/fertilizer_use_efficiency.pdf

  56. 56.

    Zwingmann, N., Mackinnon, I. D. R. & Gilkes, R. J. Use of a zeolite synthesised from alkali treated kaolin as a K fertiliser: glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl. Clay Sci. 53, 684–690 (2011).

  57. 57.

    Rui, M. et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016).

  58. 58.

    Prasad, T. N. V. K. V. et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 35, 905–927 (2012).

  59. 59.

    Liu, R., Zhang, H. & Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water. Air. Soil Pollut. 227, 42 (2016).

  60. 60.

    Burman, U., Saini, M. & Praveen-Kumar Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 95, 605–612 (2013).

  61. 61.

    Pradhan, S. et al. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 62, 8777–8785 (2014).

  62. 62.

    Cui, B. et al. Evaluation of stability and biological activity of solid nanodispersion of lambda-cyhalothrin. PLoS ONE 10, e0135953 (2015).

  63. 63.

    Elek, N. et al. Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf. Physicochem. Eng. Asp. 372, 66–72 (2010).

  64. 64.

    Luo, D. Q. et al. Anti-fungal efficacy of polybutylcyanoacrylate nanoparticles of allicin and comparison with pure allicin. J. Biomater. Sci. Polym. Ed. 20, 21–31 (2009).

  65. 65.

    Grillo, R. et al. Poly(ɛ-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 231–232, 1–9 (2012).

  66. 66.

    Milani, N. et al. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J. Agric. Food Chem. 60, 3991–3998 (2012).

  67. 67.

    Boverhof, D. R. et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73, 137–150 (2015).

  68. 68.

    ISO/TS 80004-2:2015−Nanotechnologies−Vocabulary−Part 2:Nano-objects (International Standard Organisation, 2015); https://www.iso.org/standard/54440.html

  69. 69.

    Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011); http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011H0696.

  70. 70.

    Maruyama, C. R. et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6, 19768 (2016).

  71. 71.

    Oliveira, H. C. et al. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE 10, e0132971 (2015).

  72. 72.

    Meredith, A. N., Harper, B. & Harper, S. L. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules. Environ. Int. 86, 68–74 (2016).

  73. 73.

    Son, J., Hooven, L. A., Harper, B. & Harper, S. L. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda–cyhalothrin to Daphnia magna. Sci. Total Environ. 538, 683–691 (2015).

  74. 74.

    Chaw Jiang, L. et al. Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic. Biochem. Physiol. 102, 19–29 (2012).

  75. 75.

    Bortolin, A., Aouada, F. A., Mattoso, L. H. C. & Ribeiro, C. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J. Agric. Food Chem. 61, 7431–7439 (2013).

  76. 76.

    Zhou, L. et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustain. Chem. Eng. 3, 645–653 (2015).

  77. 77.

    Babick, F., Mielke, J., Wohlleben, W., Weigel, S. & Hodoroaba, V.-D. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J. Nanoparticle Res. 18, 158 (2016).

  78. 78.

    Busch, L. Nanotechnologies, food, and agriculture: next big thing or flash in the pan? Agric. Hum. Values 25, 215–218 (2008).

  79. 79.

    Cozzens, S., Cortes, R., Soumonni, O. & Woodson, T. Nanotechnology and the millennium development goals: water, energy, and agri-food. J. Nanoparticle Res. 15, 2001 (2013).

  80. 80.

    USDA Announces $4.6 Million for Nanotechnology Research (United States Department of Agriculture, National Institute of Food and Agriculture, 2017); https://nifa.usda.gov/announcement/usda-announces-46-million-nanotechnology-research

  81. 81.

    Parisi, C., Vigani, M. & Rodríguez-Cerezo, E. Agricultural nanotechnologies: what are the current possibilities? Nano Today 10, 124–127 (2015).

  82. 82.

    Parisi, C, Vignani, M & Rodriguez Cerezo, E. Proceedings of a Workshop on “Nanotechnology for the Agricultural Sector: From Research to the Field” (Publications Office of the European Union, 2014); https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/proceedings-workshop-nanotechnology-agricultural-sector-research-field

  83. 83.

    Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

  84. 84.

    Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3, 64–64 (2015).

  85. 85.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

  86. 86.

    González, J. O. W., Jesser, E. N., Yeguerman, C. A., Ferrero, A. A. & Band, B. F. Polymer nanoparticles containing essential oils: new options for mosquito control. Environ. Sci. Pollut. Res. 24, 17006–17015 (2017).

  87. 87.

    Boehm, A. L., Martinon, I., Zerrouk, R., Rump, E. & Fessi, H. Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J. Microencapsul. 20, 433–441 (2003).

  88. 88.

    Loha, K. M., Shakil, N. A., Kumar, J., Singh, M. & Srivastava, C. Bio-efficacy evaluation of nanoformulations of beta-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J. Environ. Sci. Health Part B 47, 687–691 (2012).

  89. 89.

    Giannousi, K., Avramidis, I. & Dendrinou-Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 3, 21743–21752 (2013).

  90. 90.

    Bhan, S., Mohan, L. & Srivastava, C. N. Relative larvicidal potentiality of nano-encapsulated Temephos and Imidacloprid against Culex quinquefasciatus. J. Asia-Pac. Entomol. 17, 787–791 (2014).

  91. 91.

    Pereira, A. E. S., Grillo, R., Mello, N. F. S., Rosa, A. H. & Fraceto, L. F. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 268, 207–215 (2014).

  92. 92.

    Chariou, P. L. & Steinmetz, N. F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11, 4719–4730 (2017).

  93. 93.

    Sarkar, D. J., Kumar, J., Shakil, N. A. & Walia, S. Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J. Environ. Sci. Health Part A 47, 1701–1712 (2012).

  94. 94.

    Shakil, N. A. et al. Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J. Macromol. Sci. Part A 47, 241–247 (2010).

  95. 95.

    Zeng, H., Li, X., Zhang, G. & Dong, J. Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J. Dispers. Sci. Technol. 29, 358–361 (2008).

  96. 96.

    Silva, M. & dos, S. et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J. Hazard. Mater. 190, 366–374 (2011).

  97. 97.

    Petosa, A. R., Rajput, F., Selvam, O., Öhl, C. & Tufenkji, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Res. 111, 10–17 (2017).

  98. 98.

    Delfani, M., Firouzabadi, M. B., Farrokhi, N. & Makarian, H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 45, 530–540 (2014).

  99. 99.

    Mikhak, A., Sohrabi, A., Kassaee, M. Z. & Feizian, M. Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Ind. Crops Prod. 95, 444–452 (2017).

  100. 100.

    Elmer, W. & White, J. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

  101. 101.

    Roosta, H. R., Jalali, M. & Shahrbabaki, S. M. A. V. Effect of nano Fe-chelate, Fe-Eddha and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (lactuca Sativa L.) in NFT system. J. Plant Nutr. 38, 2176–2184 (2015).

  102. 102.

    Roshanravan, B., Soltani, S. M., Mahdavi, F., Rashid, S. A. & Yusop, M. K. Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chem. Speciat. Bioavailab. 26, 249–256 (2014).

Download references

Acknowledgements

M.K. was supported by the Austrian Science Fund (FWF V408-N28) and A.G. was supported by the European Commission (NanoFASE, GA 646002). M.K. and R.S.K. acknowledge the support from CSIRO and the International Union of Pure and Applied Chemistry.

Author contributions

T.D.B. and M.K. initiated the project. R.S.K. collected and analysed the data on pesticide efficacy, M.K. on pesticide fate, T.D.B. on fertilizer fate and efficacy, and A.G. on pesticide and fertilizer size. All authors discussed the results and contributed to the manuscript. M.K. assembled and refined the manuscript.

Competing interests

The authors declare no competing interests.

Author information

Affiliations

  1. Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna, Vienna, Austria

    • Melanie Kah
  2. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Adelaide, South Australia, Australia

    • Melanie Kah
    •  & Rai Singh Kookana
  3. Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

    • Alexander Gogos
  4. Environmental Analytics, Agroscope, Zürich, Switzerland

    • Thomas Daniel Bucheli

Authors

  1. Search for Melanie Kah in:

  2. Search for Rai Singh Kookana in:

  3. Search for Alexander Gogos in:

  4. Search for Thomas Daniel Bucheli in:

Corresponding authors

Correspondence to Melanie Kah or Thomas Daniel Bucheli.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Tables 1–2