Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Nano-enabled pesticides for sustainable agriculture and global food security

Abstract

Achieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides. Here, we provide a comprehensive analysis of the key properties of nanopesticides in controlling agricultural pests for crop enhancement compared with their non-nanoscale analogues. Our analysis shows that when compared with non-nanoscale pesticides, the overall efficacy of nanopesticides against target organisms is 31.5% higher, including an 18.9% increased efficacy in field trials. Notably, the toxicity of nanopesticides toward non-target organisms is 43.1% lower, highlighting a decrease in collateral damage to the environment. The premature loss of AIs prior to reaching target organisms is reduced by 41.4%, paired with a 22.1% lower leaching potential of AIs in soils. Nanopesticides also render other benefits, including enhanced foliar adhesion, improved crop yield and quality, and a responsive nanoscale delivery platform of AIs to mitigate various pressing biotic and abiotic stresses (for example, heat, drought and salinity). Nonetheless, the uncertainties associated with the adverse effects of some nanopesticides are not well-understood, requiring further investigations. Overall, our findings show that nanopesticides are potentially more efficient, sustainable and resilient with lower adverse environmental impacts than their conventional analogues. These benefits, if harnessed appropriately, can promote higher crop yields and thus contribute towards sustainable agriculture and global food security.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of nanopesticides.
Fig. 2: Characterization of Ag- and Cu-based nanopesticides against Pseudomonas aeruginosa.
Fig. 3: Comparison of the particle sizes of nanopesticides.
Fig. 4: Comparison of the overall efficacy of nanopesticides and non-nanoscale pesticides.
Fig. 5: Uptake, translocation and transformation of nanopesticides in a typical plant–soil system, and their impacts on the rhizosphere microbiome.
Fig. 6: Multiomics strategies to unveil stress responses, tolerance pathways and modes of action of biota upon nanopesticide exposure.

Similar content being viewed by others

Data availability

Large datasets were extracted from the 500 peer-reviewed journal articles, as shown in Supplementary Tables 1 and 2. These data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. The State of Food Security and Nutrition in the World 2019. Safeguarding Against Economic Slowdowns and Downturns FAO licence CC BY-NC-SA 30 IGO (FAO, IFAD, UNICEF, WFP, WHO, 2019); https://www.fao.org/3/ca5162en/ca5162en.pdf

  2. AQUASTAT Water Withdrawal (FAO, 2012); https://www.fao.org/nr/water/aquastat/data/query/indexhtml;jsessionid=9864E9701FABBC78FACA05B8077DB437

  3. International Energy Outlook 2020 (EIA, 2020).

  4. Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).

    Article  CAS  Google Scholar 

  5. Zhang, W. Global pesticide use: profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 8, 1–27 (2018).

    Google Scholar 

  6. New Standards to Curb the Global Spread of Plant Pests and Diseases (FAO, 2019); https://www.fao.org/news/story/en/item/1187738/icode

  7. Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

    Article  CAS  Google Scholar 

  8. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article  CAS  Google Scholar 

  9. Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    Article  CAS  Google Scholar 

  10. Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    Article  CAS  Google Scholar 

  11. Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    Article  CAS  Google Scholar 

  12. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  CAS  Google Scholar 

  13. Kah, M. et al. Comprehensive framework for human health risk assessment of nanopesticides. Nat. Nanotechnol. 16, 955–964 (2021).

    Article  CAS  Google Scholar 

  14. Zhao, X. et al. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 66, 6504–6512 (2018).

    Article  CAS  Google Scholar 

  15. Albalghiti, E., Stabryla, L. M., Gilbertson, L. & Zimmerman, J. Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environ. Sci. Nano 8, 37–66 (2020).

    Article  Google Scholar 

  16. Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).

    Article  CAS  Google Scholar 

  17. Mohanraj, V. J. & Chen, Y. Nanoparticles - a review. Trop. J. Pharm. Res. 5, 561–573 (2006).

    Google Scholar 

  18. Pasquoto-Stigliani, T. et al. Nanocapsules containing neem (Azadirachta indica) oil: development, characterization, and toxicity evaluation. Sci. Rep. 7, 5929 (2017).

    Article  CAS  Google Scholar 

  19. Pascoli, M., de Lima, R. & Fraceto, L. F. Zein nanoparticles and strategies to improve colloidal stability: a mini-review. Front. Chem. 6, 1–5 (2018).

    Article  CAS  Google Scholar 

  20. Hardy, A. et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J. 16, 5327 (2018).

    Google Scholar 

  21. Lao, S. B., Zhang, Z. X., Xu, H. H. & Jiang, G. B. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr. Polym. 82, 1136–1142 (2010).

    Article  CAS  Google Scholar 

  22. Wang, A. et al. Fabrication, characterization, and biological activity of avermectin nano-delivery systems with different particle sizes. Nanoscale Res. Lett. 13, 2 (2018).

    Article  CAS  Google Scholar 

  23. Wang, Z., Yue, L., Dhankher, O. P. & Xing, B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ. Int. 142, 105831 (2020).

    Article  CAS  Google Scholar 

  24. Sun, L., Wang, Y., Wang, R., Zhang, P., Ju, Q. & Xu, J. Physiological, transcriptomic and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ. Sci. Nano 7, 3587–3604 (2020).

    Article  CAS  Google Scholar 

  25. Gomez, A. et al. Effects of nano-enabled agricultural strategies on food quality: current knowledge and future research needs. J. Hazard. Mater. 401, 123385 (2020).

    Article  CAS  Google Scholar 

  26. Shang, H. et al. Copper oxide nanoparticle-embedded hydrogels enhance nutrient supply and growth of lettuce (Lactuca sativa) infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 55, 13432–13442 (2021).

    Article  CAS  Google Scholar 

  27. Elmer, W. H. et al. Foliar application of copper oxide nanoparticles suppresses Fusarium wilt development on chrysanthemum. Environ. Sci. Technol. 55, 10805–10810 (2021).

    Article  CAS  Google Scholar 

  28. Ma, C. et al. Role of nanoscale hydroxyapatite in disease suppression of Fusarium-infected tomato. Environ. Sci. Technol. 55, 13465–13476 (2021).

    Article  CAS  Google Scholar 

  29. Rawat, S. et al. Soil-weathered CuO nanoparticles compromise foliar health and pigment production in spinach (Spinacia oleracea). Environ. Sci. Technol. 55, 13504–13512 (2021).

    Article  CAS  Google Scholar 

  30. Kang, H. et al. Silica nanoparticle dissolution rate controls the suppression of Fusarium wilt of watermelon (Citrullus lanatus). Environ. Sci. Technol. 55, 13513–13522 (2021).

    Article  CAS  Google Scholar 

  31. McKee, M. S. & Filser, J. Impacts of metal-based engineered nanomaterials on soil communities. Environ. Sci. Nano 3, 506–533 (2016).

    Article  CAS  Google Scholar 

  32. Sillen, W. M. A. et al. Nanoparticle treatment of maize analyzed through the metatranscriptome: compromised nitrogen cycling, possible phytopathogen selection, and plant hormesis. Microbiome 8, 127 (2020).

    Article  CAS  Google Scholar 

  33. Shen, Y. et al. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). J. Agric. Food Chem. 68, 11327–11338 (2020).

    Article  CAS  Google Scholar 

  34. Elmer, W. H. & White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

    Article  CAS  Google Scholar 

  35. Buchman, J. T. et al. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustain. Chem. Eng. 7, 19649–19659 (2019).

    Article  CAS  Google Scholar 

  36. Nadiminti, P. P. et al. Nanostructured liquid crystalline particle assisted delivery of 2,4-dichlorophenoxyacetic acid to weeds, crops and model plants. Crop Prot. 82, 17–29 (2016).

    Article  CAS  Google Scholar 

  37. Gao, Y. et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chem. Eng. J. 364, 361–369 (2019).

    Article  CAS  Google Scholar 

  38. Wang, C. et al. Dinotefuran nano-pesticide with enhanced valid duration and controlled release property based on layered double hydroxide nano-carrier. Environ. Sci. Nano 8, 3202–3210 (2021).

    Article  CAS  Google Scholar 

  39. Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article  CAS  Google Scholar 

  40. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    Article  CAS  Google Scholar 

  41. Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14 (2003).

    Article  CAS  Google Scholar 

  42. Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article  Google Scholar 

  43. Tong, Y. et al. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J. Agric. Food Chem. 66, 2616–2622 (2018).

    Article  CAS  Google Scholar 

  44. Cao, L. et al. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem. 66, 6594–6603 (2018).

    Article  CAS  Google Scholar 

  45. Sun, D. et al. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 81–91 (2016).

    Article  CAS  Google Scholar 

  46. Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).

    Article  Google Scholar 

  47. Zhao, L. et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 68, 1935–1947 (2020).

    Article  CAS  Google Scholar 

  48. Cai, L., Liu, C., Fan, G., Liu, C. & Sun, X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano 6, 3653–3669 (2019).

    Article  CAS  Google Scholar 

  49. Dimkpa, C. O. et al. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 168 (2020).

    Article  Google Scholar 

  50. Ghabel, V. K. & Karamian, R. Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Bot. Croat. 79, 137–147 (2020).

    Article  CAS  Google Scholar 

  51. Latef, A. A. H. A. et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 29, 1065–1073 (2018).

    Article  Google Scholar 

  52. Cui, J., Li, Y., Jin, Q. & Li, F. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ. Sci. Nano 7, 162–171 (2020).

    Article  CAS  Google Scholar 

  53. Campos, E. V. R. et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 8, 7623 (2018).

    Article  CAS  Google Scholar 

  54. Carley, L. N. et al. Long-term effects of copper nanopesticides on soil and sediment community diversity in two outdoor mesocosm experiments. Environ. Sci. Technol. 54, 8878–8889 (2020).

    Article  CAS  Google Scholar 

  55. Song, S. et al. Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control. ACS Appl. Mater. Interfaces 11, 34258–34267 (2019).

    Article  CAS  Google Scholar 

  56. Kaziem, A. E., Gao, Y., He, S. & Li, J. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem. 65, 7854–7864 (2017).

    Article  CAS  Google Scholar 

  57. Yu, M. et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7, 11271–11280 (2017).

    Article  CAS  Google Scholar 

  58. Gao, Y. et al. A hollow mesoporous silica and poly(diacetone acrylamide) composite with sustained-release and adhesion properties. Microporous Mesoporous Mater. 255, 15–22 (2018).

    Article  CAS  Google Scholar 

  59. Jiao, W. B. et al. Porous graphitic biomass carbons as sustainable adsorption and controlled release carriers for atrazine fixation. ACS Sustain. Chem. Eng. 7, 20180–20189 (2019).

    Article  CAS  Google Scholar 

  60. Zhang, Y. et al. Temperature- and pH-responsive star polymers as nanocarriers with potential for in vivo agrochemical delivery. ACS Nano 14, 10954–10965 (2020).

    Article  CAS  Google Scholar 

  61. Bombo, A. et al. A mechanistic view of interactions of a nanoherbicide with target organism. J. Agric. Food Chem. 67, 4453–4462 (2019).

    Article  CAS  Google Scholar 

  62. Fincheira, P., Tortella, G., Duran, N., Seabra, A. B. & Rubilar, O. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit. Rev. Biotechnol. 40, 15–30 (2020).

    Article  CAS  Google Scholar 

  63. Abdallah, B. B., Andreu, I., Chatti, A., Landoulsi, A. & Gates, B. D. Size fractionation of titania nanoparticles in wild Dittrichia viscosa grown in a native environment. Environ. Sci. Technol. 54, 8649–8657 (2020).

    Article  CAS  Google Scholar 

  64. Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).

    Article  Google Scholar 

  65. Oliveira, H. C. et al. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE 10, e0132971 (2015).

    Article  CAS  Google Scholar 

  66. Sousa, G. F. M. et al. Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front. Environ. Sci. 6, 12 (2018).

    Article  Google Scholar 

  67. Xu, Z. P. et al. Subcellular compartment targeting of layered double hydroxide nanoparticles. J. Control. Release 130, 86–94 (2008).

    Article  CAS  Google Scholar 

  68. Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).

    Article  CAS  Google Scholar 

  69. Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    Article  CAS  Google Scholar 

  70. Kopittke, P. M. et al. Methods to visualize elements in plants. Plant Physiol. 182, 1869–1882 (2020).

    Article  CAS  Google Scholar 

  71. Chen, X., Zhu, Y., Yang, K., Zhu, L. & Lin, D. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. Environ. Pollut. 247, 421–430 (2019).

    Article  CAS  Google Scholar 

  72. Kah, M. & Kookana, R. Nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environ. Sci. Nano 7, 1867–1873 (2020).

    Article  CAS  Google Scholar 

  73. Zhao, L., Huang, Y. & Keller, A. A. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J. Agric. Food Chem. 66, 6628–6636 (2018).

    Article  CAS  Google Scholar 

  74. Fraceto L. F. et al. Nanopesticides - from Research and Development to Mechanisms of Action and Sustainable Use in Agriculture (Springer, 2020).

  75. Parks, A. N. et al. Assessing the release of copper from nanocopper‐treated and conventional copper‐treated lumber into marine waters II: forms and bioavailability. Environ. Toxicol. Chem. 37, 1969–1979 (2018).

    Article  CAS  Google Scholar 

  76. Parks, A. N. et al. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: concentrations and rates. Environ. Toxicol. Chem. 37, 1956–1968 (2018).

    Article  CAS  Google Scholar 

  77. Ho, K. T. et al. Effects of micronized and nanocopper azole on marine benthic communities. Environ. Toxicol. Chem. 37, 362–375 (2018).

    Article  CAS  Google Scholar 

  78. Maruyama, C. R. et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6, 19768 (2016).

    Article  CAS  Google Scholar 

  79. Guilger, M. et al. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep. 7, 44421 (2017).

    Article  CAS  Google Scholar 

  80. Majumdar, S. & Keller, A. A. Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit. Rev. Environ. Sci. Technol. 51, 2595–2636 (2020).

    Article  CAS  Google Scholar 

  81. Ankley, G. T. et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29, 730–741 (2010).

    Article  CAS  Google Scholar 

  82. Kaveh, R. et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 47, 10637–10644 (2013).

    Article  CAS  Google Scholar 

  83. Pagano, L. et al. Molecular response of crop plants to engineered nanomaterials. Environ. Sci. Technol. 50, 7198–7207 (2016).

    Article  CAS  Google Scholar 

  84. Molnar, A. et al. Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species. Chemosphere 251, 126419 (2020).

    Article  CAS  Google Scholar 

  85. Ruotolo, R. et al. Plant response to metal-containing engineered nanomaterials: an omics-based perspective. Environ. Sci. Technol. 52, 2451–2467 (2018).

    Article  CAS  Google Scholar 

  86. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Carbon 14, e1802086 (2018).

    Google Scholar 

  87. Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    Article  CAS  Google Scholar 

  88. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  Google Scholar 

  89. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    Article  CAS  Google Scholar 

  90. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Article  CAS  Google Scholar 

  91. Kwak, S. Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  CAS  Google Scholar 

  92. Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl Acad. Sci. USA 116, 7543–7548 (2019).

    Article  CAS  Google Scholar 

  93. Kumar, S. et al. Nanovehicles for plant modifications towards pest- and disease-resistance traits. Trends Plant Sci. 25, 198–212 (2020).

    Article  CAS  Google Scholar 

  94. Grieger, K. et al. Best practices from nano-risk analysis relevant for other emerging technologies. Nat. Nanotechnol. 14, 998–1001 (2019).

    Article  CAS  Google Scholar 

  95. Svendsen, C. et al. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 15, 731–742 (2020).

    Article  CAS  Google Scholar 

  96. Guidance on Information Requirements and Chemical Safety Assessment - Appendix R.6-1 for Nanoforms Applicable to the Guidance on QSARs and Grouping of Chemicals ECHA-19-H-15-EN (European Chemicals Agency, 2019); https://doi.org/10.2823/273911

  97. Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014).

    Article  CAS  Google Scholar 

  98. Omran B. A. Nanobiotechnology: A Multidisciplinary Field of Science (Springer Nature, 2020).

  99. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  100. Espana-Sanchez, B. L. et al. Early stage of antibacterial damage of metallic nanoparticles by TEM and STEM-HAADF. Curr. Nanosci. 14, 54–61 (2018).

    Article  CAS  Google Scholar 

  101. Perez-de-Luque, A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front. Environ. Sci. 5, 12 (2017).

    Article  Google Scholar 

  102. Pradas del Real, A. E. et al. Silver nanoparticles and wheat roots: a complex interplay. Environ. Sci. Technol. 51, 5774–5782 (2017).

    Article  CAS  Google Scholar 

  103. Wang, J. et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers. Water Res. 183, 116113 (2020).

    Article  CAS  Google Scholar 

  104. Garcia-Sanchez, S., Bernales, I. & Cristobal, S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16, 341 (2015).

    Article  CAS  Google Scholar 

  105. Pagano, L., Caldara, E. M., White, M., Marmiroli, J. C. & Marmiroli, N. Engineered nanomaterial activity at the organelle level: impacts on the chloroplasts and mitochondria. ACS Sustain. Chem. Eng. 6, 12562–12579 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US EPA (to C.S.) and the US Department of Agriculture, National Institute of Food and Agriculture, Hatch Program, Alabama Agricultural Experiment Station (ALA016-1-19123, to D.W.). This paper has been reviewed by the EPA Office of Research and Development and the Office of Pesticide Programs. However, all opinions expressed in this paper are only the authors and do not reflect any policies and views of the EPA.

Author information

Authors and Affiliations

Authors

Contributions

D.W., A.B. and C.S. initiated the idea. D.W., N.B.S., M.F., J.C.W. and C.S. prepared the outline of this review. All authors contributed to the article based on the draft written by D.W.

Corresponding authors

Correspondence to Dengjun Wang or Chunming Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Arturo Keller and Rai Kookana for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables S1–S8, Figs. S1 and S2, and discussion on active ingredient release.

Source data

Source Data Fig. 1

Excel files.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Saleh, N.B., Byro, A. et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022). https://doi.org/10.1038/s41565-022-01082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01082-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research