Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment

Abstract

Methanogenic archaea are major producers of methane, a potent greenhouse gas and biofuel, and are widespread in diverse environments, including the animal gut. The ecophysiology of methanogens is likely impacted by viruses, which remain, however, largely uncharacterized. Here we carried out a global investigation of viruses associated with all current diversity of methanogens by assembling an extensive CRISPR database consisting of 156,000 spacers. We report 282 high-quality (pro)viral and 205 virus-like/plasmid sequences assigned to hosts belonging to ten main orders of methanogenic archaea. Viruses of methanogens can be classified into 87 families, underscoring a still largely undiscovered genetic diversity. Viruses infecting gut-associated archaea provide evidence of convergence in adaptation with viruses infecting gut-associated bacteria. These viruses contain a large repertoire of lysin proteins that cleave archaeal pseudomurein and are enriched in glycan-binding domains (Ig-like/Flg_new) and diversity-generating retroelements. The characterization of this vast repertoire of viruses paves the way towards a better understanding of their role in regulating methanogen communities globally, as well as the development of much-needed genetic tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of methanogenic viruses and other mobile genetic elements.
Fig. 2: Diversity and relationships of viruses of methanogenic archaea.
Fig. 3: Genome maps of the identified (pro)viruses, with one example given for each order of methanogens.
Fig. 4: Proteomic tree of Methanobacteriales viral species (vOTUs).
Fig. 5: Ig-like domains and DGRs in viruses of methanogens.

Similar content being viewed by others

Data availability

All nucleotide and protein sequences of identified (pro)viruses and plasmids, spacers from the CRISPR database and MAGs of methanogenic archaea from animal gut are deposited in Mendeley Data (https://doi.org/10.17632/wdyjgcdgbm) and provided as Supplementary Data. Viral sequences assembled from metagenomic data are available in the third-party annotation (TPA) section of the DDBJ/ENA/GenBank databases under the accession numbers: BK063666–BK063680. Phrogs database of viral protein families can be found at https://phrogs.lmge.uca.fr/. The IMG/VR database is available at https://img.jgi.doe.gov/cgi-bin/vr/main.cgi.

Code availability

No custom code was used. Commands are provided in GitHub at https://github.com/Smedvede/methanoviruses.

References

  1. Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Baquero, D. P. et al. Structure and assembly of archaeal viruses. Adv. Virus Res. 108, 127–164 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. She, Q. et al. Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2, 417–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H., Peng, N., Shah, S. A., Huang, L. & She, Q. Archaeal extrachromosomal genetic elements. Microbiol. Mol. Biol. Rev. 79, 117–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Contursi, P., Fusco, S., Cannio, R. & She, Q. Molecular biology of fuselloviruses and their satellites. Extremophiles 18, 473–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Al-Shayeb, B. et al. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610, 731–736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoelmerich, M. C. et al. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nat. Commun. 13, 7085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol. 19, e3001442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article  PubMed  Google Scholar 

  10. Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Berghuis, B. A. et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl Acad. Sci. USA 116, 5037–5044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ou, Y.-F. et al. Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis. ISME J. 16, 2373–2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boyd, J. A. et al. Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J. 13, 1269–1279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article  CAS  Google Scholar 

  19. Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

  21. L Bräuer, S., Basiliko, N., M P Siljanen, H. & H Zinder, S. Methanogenic archaea in peatlands. FEMS Microbiol. Lett. 367, fnaa172 (2020).

    Article  PubMed  Google Scholar 

  22. Gründger, F. et al. Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany. Front. Microbiol. 6, 200 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Thiroux, S. et al. The first head-tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep-sea archaea. Environ. Microbiol. 23, 3614–3626 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Weidenbach, K. et al. Characterization of Blf4, an archaeal lytic virus targeting a member of the Methanomicrobiales. Viruses 13, 1934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf, S. et al. Characterization of the lytic archaeal virus Drs3 infecting Methanobacterium formicicum. Arch. Virol. 164, 667–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Nolling, J., Groffen, A. & de Vos, W. M. F1 and F3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. J. Gen. Microbiol. 139, 2511–2516 (1993).

    Article  CAS  Google Scholar 

  27. Ngo, V. Q. H. et al. Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. Environ. Microbiol. 24, 4853–4868 (2022).

  28. Ewens, S. D. et al. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc. Natl Acad. Sci. USA 118, e2020024118 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Molnár, J. et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLoS ONE 15, e0231864 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Su, X., Zhao, W. & Xia, D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol. Biofuels 11, 245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomas, C. M., Desmond-Le Quéméner, E., Gribaldo, S. & Borrel, G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13, 3358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borrel, G., Brugère, J.-F., Gribaldo, S., Schmitz, R. A. & Moissl-Eichinger, C. The host-associated archaeome. Nat. Rev. Microbiol. 18, 622–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Pfister, P., Wasserfallen, A., Stettler, R. & Leisinger, T. Molecular analysis of Methanobacterium phage psiM2. Mol. Microbiol. 30, 233–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Weidenbach, K. et al. Methanosarcina spherical virus, a novel archaeal lytic virus targeting Methanosarcina strains. J. Virol. 91, e00955-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krupovic, M., Forterre, P. & Bamford, D. H. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J. Mol. Biol. 397, 144–160 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Krupovic, M. & Bamford, D. H. Archaeal proviruses TKV4 and MVV extend the PRD1-adenovirus lineage to the phylum Euryarchaeota. Virology 375, 292–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Li, R., Wang, Y., Hu, H., Tan, Y. & Ma, Y. Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut. Nat. Commun. 13, 7978 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krupovic, M. & Varsani, A. A 2021 taxonomy update for the family Smacoviridae. Arch. Virol. 166, 3245–3253 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Díez-Villaseñor, C. & Rodriguez-Valera, F. CRISPR analysis suggests that small circular single-stranded DNA smacoviruses infect Archaea instead of humans. Nat. Commun. 10, 294 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krupovic, M. et al. Cressdnaviricota: a virus phylum unifying seven families of rep-encoding viruses with single-stranded, circular DNA genomes. J. Virol. 94, e00582–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maguire, F. et al. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic Islands. Micro. Genom. 6, mgen000436 (2020).

    Google Scholar 

  45. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom. Bioinform. 3, lqab067 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article  Google Scholar 

  49. Krupovic, M., Dolja, V. V. & Koonin, E. V. The LUCA and its complex virome. Nat. Rev. Microbiol. 18, 661–670 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Demina, T. A. & Oksanen, H. M. Pleomorphic archaeal viruses: the family Pleolipoviridae is expanding by seven new species. Arch. Virol. 165, 2723–2731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith, K. S. & Ingram-Smith, C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 15, 150–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Alqurainy, N. et al. A widespread family of phage-inducible chromosomal islands only steals bacteriophage tails to spread in nature. Cell Host Microbe 31, 69–82.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Rensen, E. I. et al. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proc. Natl Acad. Sci. USA 113, 2478–2483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quemin, E. R. J. et al. Sulfolobus spindle-shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-derived lipids. J. Virol. 89, 11681–11691 (2015).

  55. Kazlauskas, D., Varsani, A., Koonin, E. V. & Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10, 3425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Phillips, G. et al. Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I. J. Bacteriol. 190, 7876–7884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. King, G. & Murray, N. E. Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol. Microbiol. 16, 769–777 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. González-Montes, L., Del Campo, I., Garcillán-Barcia, M. P., de la Cruz, F. & Moncalián, G. ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLoS Genet. 16, e1008750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat. Microbiol. 7, 1568–1579 (2022).

  63. Depardieu, F. et al. A eukaryotic-like serine/threonine kinase protects staphylococci against phages. Cell Host Microbe 20, 471–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Medvedeva, S. et al. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat. Commun. 10, 5204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Krupovic, M. et al. Integrated mobile genetic elements in Thaumarchaeota. Environ. Microbiol. 21, 2056–2078 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  66. Catchpole, R. J. et al. A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01387-x (2023).

  67. Pfeifer, E., de Sousa, J. A. M., Touchon, M. & Rocha, E. P. C. Bacteria have numerous distinctive groups of phage–plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res. 49, 2655–2673 (2021).

  68. Youngblut, N. D. et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6, 1443–1454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo, Y., Pfister, P., Leisinger, T. & Wasserfallen, A. The genome of archaeal prophage PsiM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J. Bacteriol. 183, 5788–5792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ithurbide, S., Gribaldo, S., Albers, S.-V. & Pende, N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol. 30, 665–678 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Cahill, J. & Young, R. Phage lysis: multiple genes for multiple barriers. Adv. Virus Res. 103, 33–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Luo, Y., Pfister, P., Leisinger, T. & Wasserfallen, A. Pseudomurein endoisopeptidases PeiW and PeiP, two moderately related members of a novel family of proteases produced in Methanothermobacter strains. FEMS Microbiol. Lett. 208, 47–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Altermann, E., Reilly, K., Young, W., Ronimus, R. S. & Muetzel, S. Tailored nanoparticles with the potential to reduce ruminant methane emissions. Front. Microbiol. 13, 816695 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Leahy, S. C. et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 5, e8926 (2010).

    Article  PubMed  Google Scholar 

  75. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barr, J. J. et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl Acad. Sci. USA 112, 13675–13680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Belleghem, J. D., Dąbrowska, K., Vaneechoutte, M., Barr, J. J. & Bollyky, P. L. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chin, W. H. et al. Bacteriophages evolve enhanced persistence to a mucosal surface. Proc. Natl Acad. Sci. USA 119, e2116197119 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Fraser, J. S., Yu, Z., Maxwell, K. L. & Davidson, A. R. Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J. Mol. Biol. 359, 496–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Thomas, C. M., Taib, N., Gribaldo, S. & Borrel, G. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis. ISME Commun. https://doi.org/10.1038/s43705-021-00050-y (2021).

  81. Martins, M. et al. Streptococcus gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J. Infect. Dis. 212, 1646–1655 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Tan, Y., Schneider, T., Leong, M., Aravind, L. & Zhang, D. Novel immunoglobulin domain proteins provide insights into evolution and pathogenesis of SARS-CoV-2-related viruses. mBio 11, e00760-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Trzilova, D. & Tamayo, R. Site-specific recombination - how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Macadangdang, B. R., Makanani, S. K. & Miller, J. F. Accelerated evolution by diversity-generating retroelements. Annu. Rev. Microbiol. 76, 389–411 (2022).

    Article  PubMed  Google Scholar 

  85. Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6, 6585 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Roux, S. et al. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 12, 3076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, L. et al. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res. 46, 11–24 (2018).

    Article  PubMed  Google Scholar 

  88. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 17045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rothschild-Rodriguez, D., Hedges, M., Kaplan, M., Karav, S. & Nobrega, F. L. Phage-encoded carbohydrate-interacting proteins in the human gut. Front. Microbiol. 13, 1083208 (2022).

    Article  PubMed  Google Scholar 

  91. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 49, D764–D775 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Medvedeva, S. et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat. Microbiol. 7, 962–973 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tisza, M. J. & Buck, C. B. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc. Natl Acad. Sci. USA 118, e2023202118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Okonechnikov, K., Golosova, O., Fursov, M. & UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal Clusters of Orthologous Genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5, 818–840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Payne, L. J. et al. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res. 50, W541–W550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution (eds. Bastolla, U. et al.) 207–232 (Springer Berlin, 2007).

  111. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

  112. Sharifi, F. & Ye, Y. MyDGR: a server for identification and characterization of diversity-generating retroelements. Nucleic Acids Res. 47, W289–W294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

  116. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

  117. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

  119. Wiese, R., Eiglsperger, M. & Kaufmann, M. in Graph Drawing Software (eds. Jünger, M. et al.) 173–191 (Springer Berlin, 2004).

Download references

Acknowledgements

This work was supported by the French National Agency for Research Grants Viromet (ANR-20-CE20-009-01 to S.G. and M.K.) and Methevol (ANR-19-CE02-0005-01 to G.B.), and by the French Government’s Investissement d’Avenir programme, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID to S.G.). We thank the computational and storage services (Maestro cluster) provided by the IT department at Institut Pasteur, Paris.

Author information

Authors and Affiliations

Authors

Contributions

S.M. carried out all analysis. G.B., M.K. and S.G. conceived and supervised the study. All authors wrote the paper.

Corresponding authors

Correspondence to Guillaume Borrel, Mart Krupovic or Simonetta Gribaldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Magdalena Calusinska, Feargal Ryan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Capsid-forming PICI elements (cf-PICI) of Methanothrix (Methanosarcinales) archaea.

Capsid-forming PICI elements (cf-PICI) associated with Methanothrix (Methanosarcinales) archaea and potential helper virus also infecting Methanothrix. Protein identity is shown in green (for the same oriented proteins) and in brown (for proteins encoded on different strands).

Extended Data Fig. 2 Diversity of plasmids (and viruses with unknown capsid proteins) associated with methanogenic archaea.

vConTACT2 network showing proteome-based similarities between plasmids of methanogens. Connections between plasmids indicate sharing 20% or more protein clusters. The color of the node correspond to the host, which was defined by targeting of CRISPR spacers. The color scheme is the same as in Fig. 2b in the main text.

Extended Data Fig. 3 Two mobile genetic elements of Methanopyrales archaea.

The first MGE (36 kbp) encode viral hallmark genes – lysis protein (in green), glycosyl transferases (in violet). No MCP was predicted.

Extended Data Fig. 4 Potential conjugation systems in MGEs of Methanosarcinales.

Genome maps of plasmids and head-tailed viruses of Methanosarcina and ANME-3 archaea, showing three conjugation-related proteins (red), as well as clusters of genes involved in head assembly (yellow), tail assembly (orange), integration and recombination (green), and replication (blue).

Extended Data Fig. 5 Diverse architectures of endolysins of Methanobacteriales viruses.

Alpha-fold 2 structural predictions of PPG-binding modules are shown on the left. The diversity of pPG-cleaving enzymes (endolysins) and the number of viruses associated with each type are shown on the right. pPG-cleaving domains are shown in shades of red, and pPG-recognition modules are shown in shades of blue.

Extended Data Fig. 6 Phylogenetic tree of reverse transcriptase proteins (RTs) from diversity generating retroelements (DGRs).

Branches with bootstrap support >0.95 are marked with dots, branches with bootstrap support less than 0.8 are collapsed. The tree is rooted at midpoint. Reverse transcriptases (RTs) from viruses of methanogens are shown with bold, colored font. The symbol next to leaf ID for RTs from methanogens shows the morphology of the virus.

Supplementary information

Supplementary Information

Supplementary text and Figs. 7–9.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–14.

Supplementary Data 1

Nucleotide sequences of viruses of methanogens.

Supplementary Data 2

Nucleotide sequences of plasmids of methanogens.

Supplementary Data 3

Collection of CRISPR spacers of methanogens.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, S., Borrel, G., Krupovic, M. et al. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat Microbiol 8, 2170–2182 (2023). https://doi.org/10.1038/s41564-023-01485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01485-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing