Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria

Abstract

Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synergistic mechanisms of action and the biosynthetic strategies for the production of synergistic antimicrobials.
Fig. 2: Synergistic binding to the same target, the ribosome, by streptogramins and lankacidin and lankamycin.
Fig. 3: Inhibition of two targets in the same pathway, a Slt and a Pbp, by bulgecin and sulfazecin.
Fig. 4: Synergism through a two-step membrane attack—lacticin A1 binds to lipid II and then enables the binding of lacticin A2 and pore formation.
Fig. 5: Synergism through enhanced delivery; cyclodextrins may help to solubilize anabaenolysins and provide access to the fungal membrane through extraction of ergosterol.

Similar content being viewed by others

References

  1. Wright, G. D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep. 34, 694–701 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Davies, J. & Ryan, K. S. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem. Biol. 7, 252–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Ho, L. K. & Nodwell, J. R. David and Goliath: chemical perturbation of eukaryotes by bacteria. J. Ind. Microbiol. Biotechnol. 43, 233–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Challis, G. L. & Hopwood, D. A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl Acad. Sci. USA 100, 14555–14561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krug, D. et al. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol. 74, 3058–3068 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maansson, M. et al. An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. Msystems https://doi.org/10.1128/mSystems.00028-15 (2016).

  8. Duncan, K. R. et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 22, 460–471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baltz, R. H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 44, 573–588 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. Mbio 11, e00416-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Osbourn, A. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26, 449–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Fischbach, M. A., Walsh, C. T. & Clardy, J. The evolution of gene collectives: how natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA 105, 4601–4608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Firn, R. D. & Jones, C. G. The evolution of secondary metabolism—a unifying model. Mol. Microbiol. 37, 989–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Charney, J., Fisher, W. P., Curran, C., Machlowitz, R. A. & Tytell, A. A. Streptogramin, a new antibiotic. Antibiot. Chemother. 3, 1283–1286 (1953).

    CAS  Google Scholar 

  16. De Somer, P. & Van Dijck, P. A preliminary report on antibiotic number 899, a streptogramin-like substance. Antibiot. Chemother. 5, 632–639 (1955).

    Google Scholar 

  17. Mast, Y. & Wohlleben, W. Streptogramins—two are better than one! Int. J. Med. Microbiol. 304, 44–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Cocito, C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev. 43, 145–192 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reissier, S. & Cattoir, V. Streptogramins for the treatment of infections caused by Gram-positive pathogens. Expert Rev. Anti Infect. Ther. 19, 587–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Harms, J. M., Schlünzen, F., Fucini, P., Bartels, H. & Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2, 4 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mast, Y. et al. Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb. Biotechnol. 4, 192–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pulsawat, N., Kitani, S. & Nihira, T. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393, 31–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kawachi, R. et al. Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol. Microbiol. 36, 302–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mochizuki, S. et al. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol. Microbiol. 48, 1501–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Auerbach, T. et al. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc. Natl Acad. Sci. USA 107, 1983–1988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belousoff, M. J. et al. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc. Natl Acad. Sci. USA 108, 2717–2722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamamoto, S., He, Y., Arakawa, K. & Kinashi, H. Gamma-butyrolactone-dependent expression of the Streptomyces antibiotic regulatory protein gene srrY plays a central role in the regulatory cascade leading to lankacidin and lankamycin production in Streptomyces rochei. J. Bacteriol. 190, 1308–1316 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mrak, P. et al. Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin. J. Biol. Chem. 293, 19982–19995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McLean, T. C., Wilkinson, B., Hutchings, M. I. & Devine, R. Dissolution of the disparate: co-ordinate regulation in antibiotic biosynthesis. Antibiotics https://doi.org/10.3390/antibiotics8020083 (2019).

  30. Daniel-Ivad, M., Pimentel-Elardo, S. & Nodwell, J. R. Control of specialized metabolism by signaling and transcriptional regulation: opportunities for new platforms for drug discovery? Annu. Rev. Microbiol. 72, 25–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Imada, A., Kintaka, K., Nakao, M. & Shinagawa, S. Bulgecin, a bacterial metabolite which in concert with beta-lactam antibiotics causes bulge formation. J. Antibiot. 35, 1400–1403 (1982).

    Article  CAS  Google Scholar 

  32. Templin, M. F., Edwards, D. H. & Höltje, J. V. A murein hydrolase is the specific target of bulgecin in Escherichia coli. J. Biol. Chem. 267, 20039–20043 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Tomoshige, S. et al. Total syntheses of bulgecins A, B, and C and their bactericidal potentiation of the β-lactam antibiotics. ACS Infect. Dis. 4, 860–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horsman, M. E. et al. Whole-genome shotgun sequencing of two β-proteobacterial species in search of the bulgecin biosynthetic cluster. ACS Chem. Biol. 12, 2552–2557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, Y. & Seyedsayamdost, M. R. Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem. Biol. 24, 1437–1444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minato, Y. et al. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nat. Commun. 9, 1003 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mandler, M. D. et al. Novobiocin enhances polymyxin activity by stimulating lipopolysaccharide transport. J. Am. Chem. Soc. 140, 6749–6753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dixon, S. J. et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl Acad. Sci. USA 105, 16653–16658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori, H. et al. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12. Methods Mol. Biol. 1279, 45–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Wiedemann, I. et al. The mode of action of the lantibiotic lacticin 3147—a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol. Microbiol. 61, 285–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, N. I. et al. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 43, 3049–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Booth, M. C. et al. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbiol. 21, 1175–1184 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Oman, T. J. et al. Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J. Am. Chem. Soc. 133, 17544–17547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mathur, H. et al. Insights into the mode of action of the sactibiotic thuricin CD. Front. Microbiol. 8, 696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nissen-Meyer, J., Oppegård, C., Rogne, P., Haugen, H. S. & Kristiansen, P. E. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob. Proteins 2, 52–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. McCafferty, D. G., Cudic, P., Yu, M. K., Behenna, D. C. & Kruger, R. Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. 3, 672–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Garneau, S., Martin, N. I. & Vederas, J. C. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84, 577–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Cai, W., Matthew, S., Chen, Q. Y., Paul, V. J. & Luesch, H. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity. Bioorg. Med. Chem. 26, 2310–2319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frankmölle, W. P. et al. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. Isolation and biological properties. J. Antibiot. 45, 1451–1457 (1992).

    Article  Google Scholar 

  52. Heinilä, L. M. P. et al. Shared PKS module in biosynthesis of synergistic laxaphycins. Front. Microbiol. 11, 578878 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Surette, M. D. & Wright, G. D. Lessons from the environmental antibiotic resistome. Annu. Rev. Microbiol. 71, 309–329 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Reading, C. & Cole, M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jensen, S. E. & Paradkar, A. S. Biosynthesis and molecular genetics of clavulanic acid. Antonie Van Leeuwenhoek 75, 125–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Doroghazi, J. R. & Buckley, D. H. Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics 15, 970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jensen, S. E. Biosynthesis of clavam metabolites. J. Ind. Microbiol. Biotechnol. 39, 1407–1419 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Maeda, K. et al. Isolation and structure of a beta-lactamase inhibitor from Streptomyces. J. Antibiot. 30, 770–772 (1977).

    Article  CAS  Google Scholar 

  59. Hood, J. D., Box, S. J. & Verrall, M. S. Olivanic acids, a family of beta-lactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. II. Isolation and characterisation of the olivanic acids MM 4550, MM 13902 and MM 17880 from Streptomyces olivaceus. J. Antibiot. 32, 295–304 (1979).

    Article  CAS  Google Scholar 

  60. Li, R., Lloyd, E. P., Moshos, K. A. & Townsend, C. A. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009. ChemBioChem 15, 320–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, P. et al. An unusual protector-protégé strategy for the biosynthesis of purine nucleoside antibiotics. Cell Chem. Biol. 24, 171–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Xia, Y. et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem. Biol. 24, 1479–1489 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Wencewicz, T. A. Crossroads of antibiotic resistance and biosynthesis. J. Mol. Biol. 431, 3370–3399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park, J. et al. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat. Chem. Biol. 13, 730–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arp, J. et al. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proc. Natl Acad. Sci. USA 115, 3758–3763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shishido, T. K. et al. Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proc. Natl Acad. Sci. USA 112, 13669–13674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. MacNair, C. R. et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 9, 458 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lee, M. D. et al. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56, 81–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Yarlagadda, V., Medina, R. & Wright, G. D. Venturicidin A, a membrane-active natural product inhibitor of ATP synthase potentiates aminoglycoside antibiotics. Sci. Rep. 10, 8134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin, Y., Zhang, H., Olman, V. & Xu, Y. Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome. Proc. Natl Acad. Sci. USA 107, 6310–6315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pang, T. Y. & Lercher, M. J. Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers. Sci. Rep. 7, 40294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alanjary, M. & Medema, M. H. Mining bacterial genomes to reveal secret synergy. J. Biol. Chem. 293, 19996–19997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fischbach, M. A. & Clardy, J. One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Leão, P. N. et al. Synergistic allelochemicals from a freshwater cyanobacterium. Proc. Natl Acad. Sci. USA 107, 11183–11188 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guo, X., Liu, X., Pan, J. & Yang, H. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Sci. Rep. 5, 14720 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walker, M. C. et al. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 21, 387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, X. & van der Donk, W. A. Structural characterization and bioactivity analysis of the two-component lantibiotic Flv system from a ruminant bacterium. Cell Chem. Biol. 23, 246–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gu, W., Sardar, D., Pierce, E. & Schmidt, E. W. Roads to rome: role of multiple cassettes in cyanobactin RiPP biosynthesis. J. Am. Chem. Soc. 140, 16213–16221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martins, J. & Vasconcelos, V. Cyanobactins from cyanobacteria: current genetic and chemical state of knowledge. Mar. Drugs 13, 6910–6946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan, S., Moore, G. & Nodwell, J. Put a bow on it: knotted antibiotics take center stage. Antibiotics https://doi.org/10.3390/antibiotics8030117 (2019).

  82. Tyers, M. & Wright, G. D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17, 141–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Guideline on Clinical Development of Fixed Combination Medicinal Products EMA/CHMP/158268/2017 (European Medicines Agency, 2017).

  84. Guidance for Industry. Codevelopment of Two or More New Investigational Drugs for Use in Combination FDA-2010-D-0616 (Food and Drug Administration, 2013).

  85. Drawz, S. M. & Bonomo, R. A. Three decades of beta-lactamase inhibitors. Clin. Microbiol Rev. 23, 160–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Caesar, L. K. & Cech, N. B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat. Prod. Rep. 36, 869–888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, J. J., Tang, X. & Moore, B. S. Genetic platforms for heterologous expression of microbial natural products. Nat. Prod. Rep. 36, 1313–1332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Diaz, J. E. et al. The transcriptomic response of cells to a drug combination is more than the sum of the responses to the monotherapies. Elife https://doi.org/10.7554/eLife.52707 (2020).

  90. Rokas, A., Wisecaver, J. H. & Lind, A. L. The birth, evolution and death of metabolic gene clusters in fungi. Nat. Rev. Microbiol. 16, 731–744 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Tan, M. Lefebvre and S. Pimentel-Elardo for comments on the manuscript. Figures were created with Biorender.com. This work was supported by the Canadian Institutes of Health Research (MID-406688, to J.R.N.).

Author information

Authors and Affiliations

Authors

Contributions

K.J.M. and J.R.N. wrote the manuscript.

Corresponding authors

Correspondence to Kirsten J. Meyer or Justin R. Nodwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Gregory Challis, Linda Kinkel, Marnix Medema and Gerry Wright for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, K.J., Nodwell, J.R. Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 6, 1118–1128 (2021). https://doi.org/10.1038/s41564-021-00952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00952-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology