Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction

Abstract

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of ‘Ni(OH)2-clothed Pt-tetrapods’ with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ‘Ni(OH)2-clothed Pt-tetrapod’ with the proton conductive amorphous Ni(OH)2 to tailor local chemical environment on Pt surface for optimum HER in bulk alkaline electrolyte.
Fig. 2: Structural characterizations of Pttet@Ni(OH)2 nanocatalysts.
Fig. 3: Electrochemical characterizations of Pttet@Ni(OH)2 nanocatalysts.
Fig. 4: DFT calculations of the Pt@NiOxHy interface.
Fig. 5: Evaluation of HER activity and stability.

Similar content being viewed by others

Data availability

All data are available in the manuscript or Supplementary Information. The scripts for performing GCGA structure search and the DFT-optimized geometries are available in the Zenodo data repository at https://doi.org/10.5281/zenodo.7869311. Source data are provided with this paper.

References

  1. Yin, H. et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015).

    CAS  Google Scholar 

  2. Zhao, Z. et al. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 9046–9050 (2018).

    CAS  Google Scholar 

  3. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3dM(Ni,Co,Fe,Mn)hydr(oxy)oxide catalysts. Nat. Mater. 11, 550 (2012).

    CAS  Google Scholar 

  4. Liu, Z. et al. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem. 130, 11852–11856 (2018).

    Google Scholar 

  5. Tian, X., Zhao, P. & Sheng, W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31, 1808066 (2019).

    Google Scholar 

  6. Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010).

    CAS  Google Scholar 

  7. Satyapal, S. US Department of Energy Hydrogen and Fuel Cells Program: 2019 Annual Merit Review and Peer Evaluation Report (National Renewable Energy Laboratory, 2020)

  8. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    CAS  Google Scholar 

  9. Shen, K., Chen, X., Chen, J. & Li, Y. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887–5903 (2016).

    CAS  Google Scholar 

  10. Shah, A. H. et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5, 923–933 (2022).

    CAS  Google Scholar 

  11. Beatty, M. E. S., Chen, H., Labrador, N. Y., Lee, B. J. & Esposito, D. V. Structure–property relationships describing the buried interface between silicon oxide overlayers and electrocatalytic platinum thin films. J. Mater. Chem. A 6, 22287–22300 (2018).

    CAS  Google Scholar 

  12. Elbaz, Y., Furman, D. & Caspary Toroker, M. Hydrogen transfer through different crystal phases of nickel oxy/hydroxide. Phys. Chem. Chem. Phys. 20, 25169–25178 (2018).

    CAS  Google Scholar 

  13. Mansour, A. N. Characterization of β‐Ni(OH)2 by XPS. Surf. Sci. Spectra 3, 239–246 (1994).

    CAS  Google Scholar 

  14. Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).

    CAS  Google Scholar 

  15. Nai, J., Wang, S., Bai, Y. & Guo, L. Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. Small 9, 3147–3152 (2013).

    CAS  Google Scholar 

  16. Soto-Pérez, J. et al. In situ X-ray absorption spectroscopy of PtNi-nanowire/Vulcan XC-72R under oxygen reduction reaction in alkaline media. ACS Omega 6, 17203–17216 (2021).

    Google Scholar 

  17. Rebollar, L. et al. ‘Beyond adsorption’ descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    CAS  Google Scholar 

  18. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    CAS  Google Scholar 

  19. Wang, X., Xu, C., Jaroniec, M., Zheng, Y. & Qiao, S.-Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).

    CAS  Google Scholar 

  20. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010).

    CAS  Google Scholar 

  21. Podjaski, F. et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nat. Catal. 3, 55–63 (2020).

    CAS  Google Scholar 

  22. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    CAS  Google Scholar 

  23. Li, F. et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 10, 4060 (2019).

    Google Scholar 

  24. Liang, L. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 88, 106221 (2021).

    CAS  Google Scholar 

  25. Markovića, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    Google Scholar 

  26. Marković, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Google Scholar 

  27. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Google Scholar 

  28. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S.-Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    CAS  Google Scholar 

  29. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS  Google Scholar 

  30. Wang, Y., Chen, L., Yu, X., Wang, Y. & Zheng, G. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N Nanosheets. Adv. Energy Mater. 7, 1601390 (2017).

    Google Scholar 

  31. Jiang, Y. et al. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small 15, 1805474 (2019).

    Google Scholar 

  32. Alinezhad, A. et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 141, 16202–16207 (2019).

    CAS  Google Scholar 

  33. Chen, H. et al. Effect of atomic ordering transformation of PtNi nanoparticles on alkaline hydrogen evolution: unexpected superior activity of the disordered phase. J. Phys. Chem. C. 124, 5036–5045 (2020).

    CAS  Google Scholar 

  34. Wang, G., Huang, X., Liao, H.-G. & Sun, S.-G. Microstrain engineered NixS2/PtNi porous nanowires for boosting hydrogen evolution activity. Energy Fuels 35, 6928–6934 (2021).

    CAS  Google Scholar 

  35. Laasonen, K. & Klein, M. L. Structural study of (H2O)20 and (H2O)21H+ using density functional methods. J. Phys. Chem. 98, 10079–10083 (1994).

    CAS  Google Scholar 

  36. Zhang, C. et al. H2 in situ inducing strategy on Pt surface segregation over low Pt doped PtNi5 nanoalloy with superhigh alkaline HER activity. Adv. Funct. Mater. 31, 2008298 (2021).

    CAS  Google Scholar 

  37. He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    CAS  Google Scholar 

  38. Wang, P. et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017).

    CAS  Google Scholar 

  39. Wang, P., Jiang, K., Wang, G., Yao, J. & Huang, X. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 55, 12859–12863 (2016).

    CAS  Google Scholar 

  40. Zhou, K. L. et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12, 3783 (2021).

    CAS  Google Scholar 

  41. Sarkar, S., SenGupta, A. K. & Prakash, P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ. Sci. Technol. 44, 1161–1166 (2010).

    CAS  Google Scholar 

  42. Mayyas, A. T., Ruth, M. F., Pivovar, B. S., Bender, G. & Wipke, K. B. Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers (NREL, 2019).

  43. McCrum, I. T., Hickner, M. A. & Janik, M. J. First-principles calculation of Pt surface energies in an electrochemical environment: thermodynamic driving forces for surface faceting and nanoparticle reconstruction. Langmuir 33, 7043–7052 (2017).

    CAS  Google Scholar 

  44. Horch, S. et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 398, 134–136 (1999).

    CAS  Google Scholar 

  45. Zhang, H. et al. Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. J. Mater. Chem. A 6, 20214–20223 (2018).

    CAS  Google Scholar 

  46. Xing, Z., Han, C., Wang, D., Li, Q. & Yang, X. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 7, 7131–7135 (2017).

    CAS  Google Scholar 

  47. Song, H. J., Sung, M.-C., Yoon, H., Ju, B. & Kim, D.-W. Ultrafine α-phase molybdenum carbide decorated with platinum nanoparticles for efficient hydrogen production in acidic and alkaline media. Adv. Sci. 6, 1802135 (2019).

    Google Scholar 

  48. Xie, L. et al. A Ni(OH)2–PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. J. Mater. Chem. A 6, 1967–1970 (2018).

    CAS  Google Scholar 

  49. Chen, Z.-J. et al. Highly dispersed platinum on Honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 8, 8866–8872 (2018).

    CAS  Google Scholar 

  50. Jang, S. W. et al. Holey Pt nanosheets on NiFe-hydroxide laminates: synergistically enhanced electrocatalytic 2D interface toward hydrogen evolution reaction. ACS Nano 14, 10578–10588 (2020).

    CAS  Google Scholar 

  51. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  Google Scholar 

  52. Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    CAS  Google Scholar 

  53. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    CAS  Google Scholar 

  54. Tufa, R. A. et al. Bipolar membrane and interface materials for electrochemical energy systems. ACS Appl. Energy Mater. 4, 7419–7439 (2021).

    CAS  Google Scholar 

  55. Alexandrova, A. N. & Boldyrev, A. I. Search for the Lin0/+1/−1 (n = 5−7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput. 1, 566–580 (2005).

    CAS  Google Scholar 

  56. Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. J. Chem. Phys. 141, 044711 (2014).

    Google Scholar 

  57. Zhang, Z. & Wang, Y.-G. Molecular design of dispersed nickel phthalocyanine@nanocarbon hybrid catalyst for active and stable electroreduction of CO2. J. Phys. Chem. C 125, 13836–13849 (2021).

    CAS  Google Scholar 

  58. Sun, G., Alexandrova, A. N. & Sautet, P. Pt8 cluster on alumina under a pressure of hydrogen: support-dependent reconstruction from first-principles global optimization. J. Chem. Phys. 151, 194703 (2019).

    Google Scholar 

  59. Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic prediction of surface phase diagrams using ab initio grand canonical Monte Carlo. J. Phys. Chem. C 123, 2321–2328 (2019).

    CAS  Google Scholar 

  60. Tipton, W. W. & Hennig, R. G. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials. J. Phys. Condens. Matter 25, 495401 (2013).

    Google Scholar 

  61. Zhai, H. & Alexandrova, A. N. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J. Chem. Theory Comput. 12, 6213–6226 (2016).

    CAS  Google Scholar 

  62. Deaven, D. M. & Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).

    CAS  Google Scholar 

  63. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    CAS  Google Scholar 

  64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  66. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  67. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  68. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  69. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  70. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Google Scholar 

  71. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Google Scholar 

  72. Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    Google Scholar 

  73. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Google Scholar 

  74. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

Download references

Acknowledgements

X.D. acknowledges support from the National Science Foundation award 1800580. Y.H. acknowledges partial support from the Office of Naval Research by the grant number N000141812155 and NewHydrogen, Inc. A.N.A. acknowledges support by DOE-BES grant DE-SC0019152. X.P. acknowledges the support from the National Science Foundation award DMR-1506535. J.D. acknowledges financial support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2022006). HAADF imaging and EDS mapping were carried out using the JEOL Grand ARM in the Irvine Materials Research Institute at the University of California, Irvine. J.D. and T.H. acknowledge the support from Beijing Synchrotron Radiation Facility. A.N.A. acknowledges the computational and storage resources from the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

X.D. and Y.H. designed the research. C.W. performed the synthesis, most of the structural characterizations, and electrochemical tests. J.D. and T.H. performed the XAS measurement and analysed the EXAFS and XANES data. Z.Z. and A.N.A. conducted DFT calculations. S.W., H.P., J.H. and A.H.S. assisted in the synthesis. Z.L. and D.B. assisted in the SEM-EDS and X-ray diffraction analysis. M.X. conducted the aberration-corrected STEM characterization under the supervision of X.P. The paper was co-written by C.W., X.D., J.D., Z.Z., A.N.A. and Y.H. The research was supervised by X.D., Y.H. and A.N.A. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Anastassia N. Alexandrova, Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Shannon Boettcher, Iryna Zenyuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–6 and Notes 1–6.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Zhang, Z., Dong, J. et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01584-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing