Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution



Metallic transition metal dichalcogenides (TMDs)1,2,3,4,5,6,7,8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10–100 mA cm−2) than industrial Pt and Ir electrolysers (>1,000 mA cm−2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm−2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm−2, corresponding to a turnover frequency of ~0.2 s−1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm−2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Images of Nb1+xS2 crystals and atomic structure.
Fig. 2: HER catalytic activities of different TMDs.
Fig. 3: Electrochemical impedance spectroscopy, electrochemical stability of Nb1.35S2 and a proof-of-concept electrolyser demonstration.
Fig. 4: Thermodynamic stability and free-energy calculations for hydrogen evolution for the 2H Nb1.35S2 and 3R Nb1.35S2 phases.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    CAS  Google Scholar 

  2. 2.

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    CAS  Google Scholar 

  3. 3.

    Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).

    CAS  Google Scholar 

  4. 4.

    Liu, Y. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017).

    CAS  Google Scholar 

  5. 5.

    Shi, J. et al. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8, 958 (2017).

    Google Scholar 

  6. 6.

    Li, H. et al. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 28, 8945–8949 (2016).

    CAS  Google Scholar 

  7. 7.

    Yuan, J. et al. Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27, 5605–5609 (2015).

    CAS  Google Scholar 

  8. 8.

    Chia, X., Ambrosi, A., Lazar, P., Sofer, Z. & Pumera, M. Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 4, 14241–14253 (2016).

    CAS  Google Scholar 

  9. 9.

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Google Scholar 

  10. 10.

    Zhigang, S., Baolian, Y. & Ming, H. Bifunctional electrodes with a thin catalyst layer for ‘unitized’ proton exchange membrane regenerative fuel cell. J. Power Sources 79, 82–85 (1999).

    Google Scholar 

  11. 11.

    Altmann, S., Kaz, T. & Friedrich, K. A. Bifunctional electrodes for unitised regenerative fuel cells. Electrochim. Acta 56, 4287–4293 (2011).

    CAS  Google Scholar 

  12. 12.

    Jellinek, F., Brauer, G. & Müller, H. Molybdenum and niobium sulphides. Nature 185, 376 (1960).

    CAS  Google Scholar 

  13. 13.

    Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).

    CAS  Google Scholar 

  14. 14.

    Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    CAS  Google Scholar 

  15. 15.

    Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003 (2016).

    CAS  Google Scholar 

  16. 16.

    Yin, Y. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016).

    CAS  Google Scholar 

  17. 17.

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012).

    CAS  Google Scholar 

  18. 18.

    Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).

    CAS  Google Scholar 

  19. 19.

    Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    CAS  Google Scholar 

  20. 20.

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    CAS  Google Scholar 

  21. 21.

    Pan, H. Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci. Rep. 4, 5348 (2014).

    CAS  Google Scholar 

  22. 22.

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    CAS  Google Scholar 

  23. 23.

    Yu, Y. et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014).

    CAS  Google Scholar 

  24. 24.

    Han, N. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018).

    Google Scholar 

  25. 25.

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 6, 248 (2014).

    CAS  Google Scholar 

  26. 26.

    Xie, J. et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013).

    CAS  Google Scholar 

  27. 27.

    Hellstern, T. R., Benck, J. D., Kibsgaard, J., Hahn, C. & Jaramillo, T. F. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016).

    Google Scholar 

  28. 28.

    Wu, T. et al. Crystallographic facet dependence of the hydrogen evolution reaction on CoPS: theory and experiments. ACS Catal. 8, 1143–1152 (2018).

    CAS  Google Scholar 

  29. 29.

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48 (2016).

    CAS  Google Scholar 

  30. 30.

    Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).

    Google Scholar 

  31. 31.

    Suh, J. et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014).

    CAS  Google Scholar 

  32. 32.

    Huang, Y. H., Peng, C. C., Chen, R. S., Huang, Y. S. & Ho, C. H. Transport properties in semiconducting NbS2 nanoflakes. Appl. Phys. Lett. 105, 93106 (2014).

    Google Scholar 

  33. 33.

    Molenda, J., Bak, T. & Marzec, J. Electrical and electrochemical properties of niobium disulphide. Phys. Status Solidi A 156, 159–168 (1996).

    CAS  Google Scholar 

  34. 34.

    Niazi, A. & Rastogi, A. K. Low-temperature resistance minimum in non-superconducting 3R-Nb1+xS2 and 3R-GaxNbS2. J. Phys. Condens. Matter 13, 6787 (2001).

    CAS  Google Scholar 

  35. 35.

    Zhao, S. et al. Two-dimensional metallic NbS: growth, optical identification and transport properties. 2D Mater. 3, 25027 (2016).

    Google Scholar 

  36. 36.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  37. 37.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  38. 38.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  39. 39.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  40. 40.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 22201 (2010).

    Google Scholar 

  41. 41.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Google Scholar 

  42. 42.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

Download references


M.C. and J.Y. acknowledge financial support from AFOSR grant no. FA9550-16-1-0289. M.C. and Y.W. acknowledge support from NSF grant no. ECCS-1608389. M.C., W.Z. and X.S. acknowledge support from Shenzhen Peacock Plan (grant no. KQTD2016053112042971). M.C. and A.R.M. acknowledge financial support from the Ministry of Higher Education Malaysia. H.Y.J. acknowledges support from Creative Materials Discovery Programme through the National Research Foundation of Korea (grant no. NRF-2016M3D1A1900035). E.J.G.S. acknowledges the use of computational resources from the UK National High-performance Computing Service (ARCHER) for which access was obtained via the UKCP consortium (EPSRC grant no. EP/K013564/1), and the UK Materials and Molecular Modelling Hub for access to the THOMAS supercluster, which is partially funded by EPSRC (grant no. EP/P020194/1). The Queen’s Fellow Award through grant no. M8407MPH, the Enabling Fund (grant no. A5047TSL) and the Department for the Economy (grant no. USI 097) are also acknowledged by E.J.G.S.

Author information




M.C. conceived the idea and supervised the project. J.Y. and A.R.M. designed the experiments with guidance from M.C. J.Y. performed the electrochemical measurements and analyses with advice from R.F. and D.V. A.R.M. synthesized the Nb1.35S2 samples and characterized them. Y.W. made the devices for the HER measurements and took the electrical measurements. X.S. and I.B. made the NbS2 samples and characterized them with the help of F.Z. and W.Z. H.Y.J. prepared the focused ion beam samples and performed the STEM analyses on the samples. M.A. and E.J.G.S. provided theoretical insight for the experimental results. M.C., H.Y.J., J.Y., D.V., R.F. and H.S.S. analysed the data. M.C. wrote the paper with J.Y. and all of the authors edited the manuscript before submission.

Corresponding authors

Correspondence to Elton J. G. Santos or Hu Young Jeong or Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Tables 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Mohmad, A.R., Wang, Y. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing