Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonal neural encoding of targets and distractors supports multivariate cognitive control

Abstract

The complex challenges of our mental life require us to coordinate multiple forms of neural information processing. Recent behavioural studies have found that people can coordinate multiple forms of attention, but the underlying neural control process remains obscure. We hypothesized that the brain implements multivariate control by independently monitoring feature-specific difficulty and independently prioritizing feature-specific processing. During functional MRI, participants performed a parametric conflict task that separately tags target and distractor processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially segregated encoding of target and distractor difficulty in the dorsal anterior cingulate cortex. Consistent with feature-specific attentional priority, our encoding geometry analysis revealed overlapping but orthogonal representations of target and distractor coherence in the intraparietal sulcus. Coherence representations were mediated by control demands and aligned with both performance and frontoparietal activity, consistent with top-down attention. Together, these findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Task and behaviour.
Fig. 2: Distinct coding of target and distractor difficulty in the dACC.
Fig. 3: EGA dissociates target and distractor encoding.
Fig. 4: Region-specific feature encoding.
Fig. 5: Task-dependent encoding strength.
Fig. 6: Alignment between feature and performance encoding.
Fig. 7: The IPS mediates alignment between the lPFC and feature encoding.

Similar content being viewed by others

Data availability

The unprocessed fMRI data are available at https://doi.org/10.18112/openneuro.ds004909.v1.1.0. The behavioural data and event timing are available at https://github.com/shenhavlab/PACT_fMRI_public.

Code availability

The analysis pipeline and code are available at https://github.com/shenhavlab/PACT_fMRI_public. The software versions used are MATLAB v.2020a, fMRIPrep v.20.2.6, SPM12 (v.7771), rwls v.4.1, PALM v.a119, rsatoolbox_matlab v.1.0, bayesFactor v.1.1, surfplot v.0.1.0 and ScientificColourMaps7.

References

  1. Musslick, S., Shenhav, A., Botvinick, M. & Cohen, J. A Computational model of control allocation based on the expected value of control. In 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM, 2019).

  2. Badre, D., Bhandari, A., Keglovits, H. & Kikumoto, A. The dimensionality of neural representations for control. Curr. Opin. Behav. Sci. 38, 20–28 (2021).

    Article  PubMed  Google Scholar 

  3. Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M. & Ullsperger, M. Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas. J. Neurosci. 31, 1780–1789 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Egner, T. Multiple conflict-driven control mechanisms in the human brain. Trends Cogn. Sci. 12, 374–380 (2008).

    Article  PubMed  Google Scholar 

  5. Ritz, H., Leng, X. & Shenhav, A. Cognitive control as a multivariate optimization problem. J. Cogn. Neurosci. 34, 569–591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex 86, 186–204 (2017).

    Article  PubMed  Google Scholar 

  7. Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2, 233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C. & Ullsperger, M. Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nat. Commun. 9, 5038 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Leng, X., Yee, D., Ritz, H. & Shenhav, A. Dissociable influences of reward and punishment on adaptive cognitive control. PLoS Comput. Biol. 17, e1009737 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ritz, H. & Shenhav, A. Humans reconfigure target and distractor processing to address distinct task demands. Psychol. Rev. https://doi.org/10.1037/rev0000442 (2023).

  11. Kalman, R. E. On the general theory of control systems. IFAC Proc. 1, 491–502 (1960).

    Google Scholar 

  12. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacDonald, A. W. 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Smith, E. H. et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nat. Neurosci. 22, 1883–1891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology https://doi.org/10.1038/s41386-021-01152-w (2021).

  16. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N. & Zabeh, E. Curiosity, information demand and attentional priority. Curr. Opin. Behav. Sci. 35, 83–91 (2020).

    Article  Google Scholar 

  18. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E. Evidence for two independent factors that modify brain networks to meet task goals. Cell Rep. 17, 1276–1288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vermeylen, L. et al. Shared neural representations of cognitive conflict and negative affect in the medial frontal cortex. J. Neurosci. 40, 8715–8725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Grinband, J. et al. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage 57, 303–311 (2011).

    Article  PubMed  Google Scholar 

  26. Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E. & Braver, T. S. BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS ONE 4, e4257 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Mumford, J. A. et al. The response time paradox in functional magnetic resonance imaging analyses. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01760-0 (2023).

  28. Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Beldzik, E. & Ullsperger, M. A thin line between conflict and reaction time effects on EEG and fMRI brain signals. Preprint at bioRxiv https://doi.org/10.1101/2023.02.14.528515 (2023).

  30. Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. Dissociable neural mechanisms track evidence accumulation for selection of attention versus action. Nat. Commun. 9, 2485 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Taren, A. A., Venkatraman, V. & Huettel, S. A. A parallel functional topography between medial and lateral prefrontal cortex: evidence and implications for cognitive control. J. Neurosci. 31, 5026–5031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Venkatraman, V., Rosati, A. G., Taren, A. A. & Huettel, S. A. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J. Neurosci. 29, 13158–13164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu, Z. et al. Single-neuron correlates of error monitoring and post-error adjustments in human medial frontal cortex. Neuron 101, 165–177.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Zarr, N. & Brown, J. W. Hierarchical error representation in medial prefrontal cortex. NeuroImage 124, 238–247 (2016).

    Article  PubMed  Google Scholar 

  35. Ebitz, B. R. et al. Human dorsal anterior cingulate neurons signal conflict by amplifying task-relevant information. Preprint at bioRxiv https://doi.org/10.1101/2020.03.14.991745 (2020).

  36. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science 368, eaba3313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ebitz, R. B. & Hayden, B. Y. The population doctrine in cognitive neuroscience. Neuron https://doi.org/10.1016/j.neuron.2021.07.011 (2021).

  39. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kayser, A. S., Erickson, D. T., Buchsbaum, B. R. & D’Esposito, M. Neural representations of relevant and irrelevant features in perceptual decision making. J. Neurosci. 30, 15778–15789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernardi, S. et al. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working memory and attention. Nature https://doi.org/10.1038/s41586-021-03390-w (2021).

  45. Takagi, Y., Hunt, L. T., Woolrich, M. W., Behrens, T. E. & Klein-Flügge, M. C. Adapting non-invasive human recordings along multiple task-axes shows unfolding of spontaneous and over-trained choice. eLife 10, e60988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332–361 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Woolgar, A., Hampshire, A., Thompson, R. & Duncan, J. Adaptive coding of task-relevant information in human frontoparietal cortex. J. Neurosci. 31, 14592–14599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1–17 (2007).

    Article  PubMed  Google Scholar 

  49. Shenhav, A., Straccia, M. A., Botvinick, M. M. & Cohen, J. D. Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice. Cogn. Affect. Behav. Neurosci. https://doi.org/10.3758/s13415-016-0458-8 (2016).

  50. Fleming, S. M., van der Putten, E. J. & Daw, N. D. Neural mediators of changes of mind about perceptual decisions. Nat. Neurosci. 21, 617–624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shenhav, A. & Karmarkar, U. R. Dissociable components of the reward circuit are involved in appraisal versus choice. Sci. Rep. 9, 1958 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Clairis, N. & Pessiglione, M. Value, confidence, deliberation: a functional partition of the medial prefrontal cortex demonstrated across rating and choice tasks. J. Neurosci. 42, 5580–5592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  54. Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  56. Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    Article  PubMed  Google Scholar 

  57. Bisley, J. W. & Mirpour, K. The neural instantiation of a priority map. Curr. Opin. Psychol. 29, 108–112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yantis, S. & Serences, J. T. Cortical mechanisms of space-based and object-based attentional control. Curr. Opin. Neurobiol. 13, 187–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain representations. Annu. Rev. Neurosci. 42, 407–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts behavioral performance on individual trials. J. Neurosci. 30, 15241–15253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00821-9 (2021).

  62. Kimmel, D. L., Elsayed, G. F., Cunningham, J. P. & Newsome, W. T. Value and choice as separable and stable representations in orbitofrontal cortex. Nat. Commun. 11, 3466 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137, 188–200 (2016).

    Article  PubMed  Google Scholar 

  64. Diedrichsen, J. & Kriegeskorte, N. Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Comput. Biol. 13, e1005508 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 100, 441–471 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Thornton, M. A. & Mitchell, J. P. Consistent neural activity patterns represent personally familiar people. J. Cogn. Neurosci. 29, 1583–1594 (2017).

    Article  PubMed  Google Scholar 

  68. Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kayser, A. S., Buchsbaum, B. R., Erickson, D. T. & D’Esposito, M. The functional anatomy of a perceptual decision in the human brain. J. Neurophysiol. 103, 1179–1194 (2010).

    Article  PubMed  Google Scholar 

  70. Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl Acad. Sci. USA 103, 3863–3868 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Woolgar, A., Williams, M. A. & Rich, A. N. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices. NeuroImage 109, 429–437 (2015).

    Article  PubMed  Google Scholar 

  72. Woolgar, A., Afshar, S., Williams, M. A. & Rich, A. N. Flexible coding of task rules in frontoparietal cortex: an adaptive system for flexible cognitive control. J. Cogn. Neurosci. 27, 1895–1911 (2015).

    Article  PubMed  Google Scholar 

  73. Jackson, J., Rich, A. N., Williams, M. A. & Woolgar, A. Feature-selective attention in frontoparietal cortex: multivoxel codes adjust to prioritize task-relevant information. J. Cogn. Neurosci. 29, 310–321 (2017).

    Article  PubMed  Google Scholar 

  74. Woolgar, A., Thompson, R., Bor, D. & Duncan, J. Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. NeuroImage 56, 744–752 (2011).

    Article  PubMed  Google Scholar 

  75. Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. https://doi.org/10.1038/s41593-020-0696-5 (2020).

  76. Pagan, M. et al. A new theoretical framework jointly explains behavioral and neural variability across subjects performing flexible decision-making. Preprint at bioRxiv https://doi.org/10.1101/2022.11.28.518207 (2022).

  77. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  79. Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki, M. & Gottlieb, J. Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat. Neurosci. 16, 98–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-selective cortex. eLife 6, e22341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Saalmann, Y. B., Pigarev, I. N. & Vidyasagar, T. R. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316, 1612–1615 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Reid, A. T. et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22, 1751–1760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. MacKinnon, D. P., Fairchild, A. J. & Fritz, M. S. Mediation analysis. Annu. Rev. Psychol. 58, 593–614 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology https://doi.org/10.1038/s41386-021-01132-0 (2021).

  88. Holroyd, C. B. & McClure, S. M. Hierarchical control over effortful behavior by rodent medial frontal cortex: a computational model. Psychol. Rev. 122, 54–83 (2015).

    Article  PubMed  Google Scholar 

  89. Holroyd, C. B. & Yeung, N. in Neural Basis of Motivational and Cognitive Control (eds Mars, R. B. et al.) 332–349 (MIT Press, 2011); https://doi.org/10.7551/mitpress/9780262016438.003.0018

  90. Vassena, E., Deraeve, J. & Alexander, W. H. Predicting motivation: computational models of PFC can explain neural coding of motivation and effort-based decision-making in health and disease. J. Cogn. Neurosci. 29, 1633–1645 (2017).

    Article  PubMed  Google Scholar 

  91. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235 (2007).

    Article  PubMed  Google Scholar 

  92. Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).

    Article  PubMed  Google Scholar 

  94. Serences, J. T. & Yantis, S. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cereb. Cortex 17, 284–293 (2007).

    Article  PubMed  Google Scholar 

  95. Yantis, S. et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5, 995–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T. & Yantis, S. Control of spatial and feature-based attention in frontoparietal cortex. J. Neurosci. 30, 14330–14339 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J. & Yantis, S. Decoding cognitive control in human parietal cortex. Proc. Natl Acad. Sci. USA 106, 17974–17979 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X. & Yantis, S. Control of object-based attention in human cortex. Cereb. Cortex 14, 1346–1357 (2004).

    Article  PubMed  Google Scholar 

  99. Molenberghs, P., Mesulam, M. M., Peeters, R. & Vandenberghe, R. R. C. Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. Cereb. Cortex 17, 2703–2712 (2007).

    Article  PubMed  Google Scholar 

  100. Adam, K. C. S. & Serences, J. T. History modulates early sensory processing of salient distractors. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.3099-20.2021 (2021).

  101. Soutschek, A., Stelzel, C., Paschke, L., Walter, H. & Schubert, T. Dissociable effects of motivation and expectancy on conflict processing: an fMRI study. J. Cogn. Neurosci. 27, 409–423 (2015).

    Article  PubMed  Google Scholar 

  102. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rust, N. C. & Cohen, M. R. Priority coding in the visual system. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-022-00582-9 (2022).

  104. Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N. & Braver, T. S. Reward motivation enhances task coding in frontoparietal cortex. Cereb. Cortex 26, 1647–1659 (2016).

    Article  PubMed  Google Scholar 

  105. Hall-McMaster, S., Muhle-Karbe, P. S., Myers, N. E. & Stokes, M. G. Reward boosts neural coding of task rules to optimize cognitive flexibility. J. Neurosci. 39, 8549–8561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Lauritzen, T. Z., D’Esposito, M., Heeger, D. J. & Silver, M. A. Top-down flow of visual spatial attention signals from parietal to occipital cortex. J. Vis. 9, 18 (2009).

    Article  Google Scholar 

  108. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Srinath, R., Ruff, D. A. & Cohen, M. R. Attention improves information flow between neuronal populations without changing the communication subspace. Curr. Biol. 31, 5299–5313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Petrides, M. & Pandya, D. N. Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J. Comp. Neurol. 498, 227–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Jackson, J. B., Feredoes, E., Rich, A. N., Lindner, M. & Woolgar, A. Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information. Commun. Biol. 4, 588 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vul, E., Alvarez, G., Tenenbaum, J. & Black, M. in Advances in Neural Information Processing Systems 22 (eds Bengio, Y. et al.) 1–9 (Curran Associates, 2009).

  113. Ritz, H., Wild, C. J. & Johnsrude, I. S. Parametric cognitive load reveals hidden costs in the neural processing of perfectly intelligible degraded speech. J. Neurosci. 42, 4619–4628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Culham, J. C., Cavanagh, P. & Kanwisher, N. G. Attention response functions: characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron 32, 737–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Culham, J. C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol. 80, 2657–2670 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Howe, P. D., Horowitz, T. S., Morocz, I. A., Wolfe, J. & Livingstone, M. S. Using fMRI to distinguish components of the multiple object tracking task. J. Vis. 9, 10.1–11 (2009).

    Article  PubMed  Google Scholar 

  117. Jovicich, J. et al. Brain areas specific for attentional load in a motion-tracking task. J. Cogn. Neurosci. 13, 1048–1058 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates attention independently of action value in posterior parietal cortex. J. Neurosci. 29, 11182–11191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T. & Haynes, J.-D. The role of the parietal cortex in the representation of task–reward associations. J. Neurosci. 35, 12355–12365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Parro, C., Dixon, M. L. & Christoff, K. The neural basis of motivational influences on cognitive control. Hum. Brain Mapp. 39, 5097–5111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Weichart, E. R., Turner, B. M. & Sederberg, P. B. A model of dynamic, within-trial conflict resolution for decision making. Psychol. Rev. https://doi.org/10.1037/rev0000191 (2020).

  122. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Diedrichsen, J. & Shadmehr, R. Detecting and adjusting for artifacts in fMRI time series data. NeuroImage 27, 624–634 (2005).

    Article  PubMed  Google Scholar 

  125. Jones, M. S., Zhu, Z., Bajracharya, A., Luor, A. & Peelle, J. E. A multi-dataset evaluation of frame censoring for task-based fMRI. Aperture Neuro. https://doi.org/10.52294/apertureneuro.2022.2.nxor2026 (2022).

  126. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).

    Article  PubMed  Google Scholar 

  127. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  128. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gale, D. J., Vos de Wael., R., Benkarim, O. & Bernhardt, B. Surfplot: publication-ready brain surface figures. Zenodo https://doi.org/10.5281/zenodo.5567926 (2021).

  130. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Diedrichsen, J., Yokoi, A. & Arbuckle, S. A. Pattern component modeling: a flexible approach for understanding the representational structure of brain activity patterns. NeuroImage 180, 119–133 (2018).

    Article  PubMed  Google Scholar 

  132. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374 (2012).

    Article  MathSciNet  Google Scholar 

  133. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  PubMed  Google Scholar 

  134. Belsley, D. A., Kuh, E. & Welsch, R. E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity Wiley Series in Probability and Statistics (John Wiley & Sons, 1980).

Download references

Acknowledgements

This work was supported by NIH grant no. R01MH124849 (A.S.), NSF CAREER Award no. 2046111(A.S.), NIH grant no. S10OD025181 (A.S.) and the C.V. Starr Postdoctoral Fellowship (H.R.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank J. Kim for her assistance in data collection and M. J. Frank, M. N. Nassar, J. Cohen, M. Esterman, R. Frömer, J. Diedrichsen, A. Bhandari, D. Yee, S. Nastase, C. Jahn and the Shenhav Lab for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the experiment, planned the analyses and wrote the manuscript. H.R. collected the data and conducted the analyses.

Corresponding author

Correspondence to Harrison Ritz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Tobias Egner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Error control analysis.

Distractor congruence effect when controlling for different types of errors (two-tailed t-test, thresholded at p < 0.01 uncorrected). Our primary analysis only analyzed trials without omission errors (navy), here plotted at a liberal uncorrected threshold. When we analyze trials without omission errors and commission errors (cyan), we see a consistent whole-brain topography, albeit at a lower statistical threshold. In both cases, relevant errors trials were included as nuisance events.

Extended Data Fig. 2 Univariate fMRI response to target ease.

Parametric effects of target coherence and distractor congruence (two-tailed t-test, corrected using threshold-free cluster enhancement). Here we included the rostral effect of target ease (positive relationship with target coherence) in red. Compare to Fig. 2.

Extended Data Fig. 3 Encoding Geometry Analysis (EGA) validation.

We validated how well we could recover the similarity between linear Gaussian models (training: Y = XB + Σ, test: Y' = XB′ + Σ). Y is the [1000 × 250] activity timeseries, X is the [1000 × 1] design matrix, B is the [1 × 250] encoding profile, and Σ reflects IID Gaussian noise. In each of our 1000 simulations, we used two different methods to recover the similarity between the true training encoding profile (B) and the true test encoding profile (B′ = B + N(0,1)), based on noisy activity timeseries (Y = XB + N(0,σY); Y′ = XB' + N(0,σY)). The first method was pattern reliability (that is, our EGA method), correlating the encoding profile estimated during training (\(\hat{B}={X}^{\dagger }Y\), † indicates pseudoinverse) with the encoding profile estimated during test (\(\overline{{B\text{'}}}={{X\text{'}}}^{\dagger }{Y\text{'}}\)). The second method was activity prediction (that is, the traditional encoding approach), correlating the ground-truth test activity (Y′) with the predicted test activity (\(\overline{{Y\text{'}}}={X\text{'}}\hat{B}\)) after vectorizing both multivariate timeseries. To simulate the high measurement noise inherent to fMRI, we compared these methods under different levels of residual SD (σY). a) Estimated pattern reliability tracked the true pattern reliability (that is, the true correlation between B′ and B) across the full range of residual SD, with some attenuation at high levels of noise b) Unlike pattern reliability, activity prediction became much poorer as residual SD increased. c) Correlating the true pattern reliability (correlation between B and B′) and estimated encoding strength (that is, pattern reliability or activity prediction), we found pattern reliability was better correlated with the true reliability, particularly at higher levels of noise. d) Both methods had similar performance in the absence of a signal (\({B}_{{null}}^{{\prime} }{\mathscr{=}}{\mathscr{N}}(\mathrm{0,1})\)).

Extended Data Fig. 4 Segregation Analysis.

a) we used pattern component modelling131 to simulate different candidate encoding profiles. ‘Pure Selectivity’ reflects the segregated encoding hypothesis, with different voxels (rows) encoding different features (columns). ‘Mixed Selectivity’ reflects the orthogonal subspace hypothesis, with the same voxels encoding both features. ‘Sparse’ models include non-selective voxels. b) By design, all of these encoding profiles had the same orthogonal encoding alignment (uncorrelated encoding weights), highlighting that this measure is unable to adjudicate between candidate encoding profiles. c) These models can be differentiated by correlating their absolute encoding weights, testing whether the sensitivity of a voxel to one feature is related to its sensitivity to the other feature, ignoring the direction of encoding. Pure selective encoding predicts a negative relationship, mixed selective encoding predicts no relationship, and sparse mixed selective encoding predicts a positive relationship. Similarity matrices averaged over 10,000 simulations. d) Correlating the absolute encoding weights, we found that the IPS profile was consistent with sparse mixed selective encoding.

Extended Data Fig. 5 3D multidimensional scaling.

The first three principal components of region-averaged condition similarity. Dark lines highlight the encoding geometry (connecting target coherence circles and showing the average direction for distractor coherence diamonds). Gray lines reflect the projection of these trends on different planes of the representational space. See legend and Fig. 4b for figure details. Note that in IPS, whereas targets and distractors are encoded orthogonally in the first two dimensions (floor), there appears to be some alignment in higher dimensions (right wall). In SPL, features appear to be aligned in all dimensions.

Extended Data Fig. 6 Feature encoding in frontal networks.

a) Similarity matrices for ‘Salience / Ventral Attention (SVA)’ and ‘Control’ networks in dACC and lPFC, correlating feature evidence (‘Evid’), feature coherence (‘Coh’), and feature congruence (‘Cong’). Encoding strength on diagonal (right-tailed p-value), encoding alignment on off-diagonal (two-tailed p-value). b) Classical MDS embedding of target (circle) and distractor (diamond) representations at different levels of evidence. Colors denote responses, hues denote coherence. GLMs: A: Feature MV, B: Evidence Levels, see Table 1.

Extended Data Fig. 7 Multivariate encoding of task performance.

Encoding Strength (across-run reliability) for a) Accuracy and b) Reaction Time (B). C) Alignment between Accuracy and Reaction Time encoding. Outlined parcels are significant at p < 0.05 FWE (two-tailed max-statistic randomization test). Parcels in C are thresholded based on the reliability in A and B (both two-tailed p < 0.001 uncorrected). GLM: Performance.

Extended Data Fig. 8 Connectivity Alignment Schematic.

We estimated connectivity encoding by getting the aggregated residual timeseries from our seed regions (eigenvariate; left), including these timeseries in our whole-brain GLM (middle), and then testing the alignment between connectivity encoding patterns and task encoding patterns (right).

Extended Data Fig. 9 SPL alignment with evidence encoding.

a) Alignment between SPL activity and target evidence encoding. b) Alignment between IPS activity and target evidence encoding. c) Differences between SPL-evidence alignment and IPS-evidence alignment, showing stronger SPL connectivity. Note that target evidence encoding is signed according to the right-hand response (contralateral motor cortex should have a positive response). Colors reflect two-tailed p < 0.001 (uncorrected), outlines reflect p < 0.05 (corrected with two-tailed max-statistic randomization test).

Extended Data Fig. 10 Cross-validation prevents feature correlations from biasing alignment.

We used pattern component modeling131 to simulate neural data, testing whether feature correlations could spuriously create encoding alignment. a) Our design matrix had two simulate runs of two feature timeseries. b) Our features were correlated by design (that is, the columns of the design matrix were correlated). c) Despite correlation in the design matrix, these features were independently encoding in our simulated neural population (that is, in two distinct pattern components, which were each reliable across runs). d) Correlating our estimated encoding profiles, we found that within-run alignment (orange) had a spurious negative correlation (the opposite direction of the feature correlations). Critically, our analyses used between-run alignment (cyan), which avoids this biasing effect of feature correlations. Intuitively, since features are not correlated across runs (that is, they come from different trials), they do not produce spurious correlations. Effect sizes are computed across 10,000 simulations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1 and 2.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritz, H., Shenhav, A. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01826-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing