Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pain-preferential thalamocortical neural dynamics across species

Abstract

Searching for pain-preferential neural activity is essential for understanding and managing pain. Here, we investigated the preferential role of thalamocortical neural dynamics in encoding pain using human neuroimaging and rat electrophysiology across three studies. In study 1, we found that painful stimuli preferentially activated the medial-dorsal (MD) thalamic nucleus and its functional connectivity with the dorsal anterior cingulate cortex (dACC) and insula in two human functional magnetic resonance imaging (fMRI) datasets (n = 399 and n = 25). In study 2, human fMRI and electroencephalography fusion analyses (n = 220) revealed that pain-preferential MD responses were identified 89–295 ms after painful stimuli. In study 3, rat electrophysiology further showed that painful stimuli preferentially activated MD neurons and MD–ACC connectivity. These converging cross-species findings provided evidence for pain-preferential thalamocortical neural dynamics, which could guide future pain evaluation and management strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research questions and design.
Fig. 2: Sensory experiment and fMRI BOLD responses.
Fig. 3: Pain-preferential thalamic responses and thalamocortical connectivity.
Fig. 4: The experimental design and results for controlling salience effects on thalamic BOLD responses.
Fig. 5: EEG time series and decoding performance.
Fig. 6: EEG–fMRI fusion decoding performance.
Fig. 7: Experiment and spike results in rats.

Similar content being viewed by others

Data availability

Individual fMRI, EEG and rodent electrophysiological data are available at ScienceDB (https://doi.org/10.57760/sciencedb.psych.00120).

Code availability

MRI and EEG data analyses were based on standard procedures and codes in SPM and EEGLAB. The machine learning based analyses were based on the codes in LIBSVM. Customized codes for EEG-fMRI fusion can be requested from the corresponding authors.

References

  1. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tu, Y. et al. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Hum. Brain Mapp. 37, 501–514 (2016).

    Article  PubMed  Google Scholar 

  4. Legrain, V., Iannetti, G., Plaghki, L. & Mouraux, A. The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93, 111–124 (2011).

    Article  PubMed  Google Scholar 

  5. Liang, M., Su, Q., Mouraux, A. & Iannetti, G. D. Spatial patterns of brain activity preferentially reflecting transient pain and stimulus intensity. Cereb. Cortex 29, 2211–2227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghazanfar, A. A. & Schroeder, C. E. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).

    Article  PubMed  Google Scholar 

  7. Liang, M., Mouraux, A., Hu, L. & Iannetti, G. D. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat. Commun. 4, 1979 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Kayser, C. The multisensory nature of unisensory cortices: a puzzle continued. Neuron 67, 178–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G. & Iannetti, G. D. A multisensory investigation of the functional significance of the ‘pain matrix’. Neuroimage 54, 2237–2249 (2011).

    Article  PubMed  Google Scholar 

  10. Su, Q. et al. Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli. Neuroimage 192, 52–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, X. et al. A multisensory fMRI investigation of nociceptive-preferential cortical regions and responses. Front. Neurosci. 15, 420 (2021).

    Google Scholar 

  12. Tang, J. et al. Brain gene expression pattern correlated with the differential brain activation by pain and touch in humans. Cereb. Cortex 31, 3506–3521 (2021).

    Article  PubMed  Google Scholar 

  13. Auvray, M., Myin, E. & Spence, C. The sensory-discriminative and affective-motivational aspects of pain. Neurosci. Biobehav. Rev. 34, 214–223 (2010).

    Article  PubMed  Google Scholar 

  14. Coghill, R. C. The distributed nociceptive system: a framework for understanding pain. Trends Neurosci. 43, 780–794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kulkarni, B. et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur. J. Neurosci. 21, 3133–3142 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Najdenovska, E. et al. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion-weighted magnetic resonance imaging. Sci. Data 5, 180270 (2018).

  17. Horing, B., Sprenger, C. & Büchel, C. The parietal operculum preferentially encodes heat pain and not salience. PLoS Biol. 17, e3000205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cichy, R. M. & Oliva, A. A M/EEG-fMRI fusion primer: resolving human brain responses in space and time. Neuron 107, 772–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mouraux, A. & Iannetti, G. D. The search for pain biomarkers in the human brain. Brain 141, 3290–3307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borsook, D., Edwards, R., Elman, I., Becerra, L. & Levine, J. Pain and analgesia: the value of salience circuits. Prog. Neurobiol. 104, 93–105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

  22. Iannetti, G. D., Hughes, N. P., Lee, M. C. & Mouraux, A. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J. Neurophysiol. 100, 815–828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seminowicz, D. A. & Davis, K. D. Interactions of pain intensity and cognitive load: the brain stays on task. Cereb. Cortex 17, 1412–1422 (2007).

    Article  PubMed  Google Scholar 

  24. Wiech, K., Ploner, M. & Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 (2008).

    Article  PubMed  Google Scholar 

  25. Salomons, T. V., Iannetti, G. D., Liang, M. & Wood, J. N. The ‘pain matrix’ in pain-free individuals. JAMA Neurol. 73, 755–756 (2016).

    Article  PubMed  Google Scholar 

  26. Segerdahl, A. R., Mezue, M., Okell, T. W., Farrar, J. T. & Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18, 499–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lieberman, M. D. & Eisenberger, N. I. The dorsal anterior cingulate cortex is selective for pain: results from large-scale reverse inference. Proc. Natl Acad. Sci. USA 112, 15250–15255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Tu, Y. et al. Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat. Commun. 11, 3948 (2020).

  31. Woolf, C. J. & Mannion, R. J. Neuropathic pain: aetiology, symptoms, mechanisms and management. Lancet 353, 1959–1964 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

  33. Zhou, L. et al. A modality-specific dysfunction of pain processing in schizophrenia. Hum. Brain Mapp. 41, 1738–1753 (2020).

    Article  PubMed  Google Scholar 

  34. Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Todd, N., McDannold, N. & Borsook, D. Targeted manipulation of pain neural networks: the potential of focused ultrasound for treatment of chronic pain. Neurosci. Biobehav. Rev. 115, 238–250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 6th edn (Academic Press, 2006).

  37. Yue, L., Iannetti, G. D. & Hu, L. The neural origin of nociceptive-induced gamma-band oscillations. J. Neurosci. 40, 3478–3490 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashburner, J. & Friston, K. Unified segmentation. Neuroimage 26, 839–851 (2005).

    Article  PubMed  Google Scholar 

  39. Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017).

    Article  PubMed  Google Scholar 

  40. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  41. Hazan, L., Zugaro, M. & Buzsáki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155, 207–216 (2006).

    Article  PubMed  Google Scholar 

  42. Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chang, C. & Lin, C. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011).

    Article  Google Scholar 

  44. Zhou, F. et al. A distributed fMRI-based signature for the subjective experience of fear. Nat. Commun. 12, 6643 (2021).

  45. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110 (2014).

    Article  PubMed  Google Scholar 

  46. Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Di, X. & Biswal, B. Toward task connectomics: examining whole-brain task modulated connectivity in different task domains. Cereb. Cortex 29, 1572–1583 (2019).

    Article  PubMed  Google Scholar 

  48. Benedek, M. & Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190, 80–91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hu, L. et al. Was it a pain or a sound? Across-species variability in sensory sensitivity. Pain 156, 2449–2457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yue, L., Zhang, F., Lu, X., Wan, Y. & Hu, L. Simultaneous recordings of cortical local field potentials and electrocorticograms in response to nociceptive laser stimuli from freely moving rats. J. Vis. Exp. 2019, e58686 (2019).

  51. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

    Article  PubMed  Google Scholar 

  52. Bokil, H. andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. P. Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192, 146–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  PubMed  Google Scholar 

  54. Tu, Y. et al. How expectations of pain elicited by consciously and unconsciously perceived cues unfold over time. Neuroimage 235, 117985 (2021).

    Article  PubMed  Google Scholar 

  55. Cichy, R. M., Pantazis, D. & Oliva, A. Resolving human object recognition in space and time. Nat. Neurosci. 17, 455–462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.T. is supported by STI2030-Major Projects by the Ministry of Science and Technology of China (grant no. 2022ZD0206400), National Natural Science Foundation of China (grant nos. 32171078 and 32322035), Scientific Foundation of the Institute of Psychology, Chinese Academy of Sciences (grant nos. E0CX52 and E2CX4015) and Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (grant no. E1KX0210). L.H. is supported by National Natural Science Foundation of China (grant no. 32071061) and Beijing Natural Science Foundation (grant no. JQ22018). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This work was conceptualized by Y.T. and L.H. who also developed the methodology, undertook project administration and supervision and acquired funding. Investigation was undertaken by Y.T., H.Z., Z.L., Y.B., L.Y. and L.H. Visualization was by Y.T. and Z.L. The original draft was written by Y.T., with review and editing by Y.T., L.Z. and L.H.

Corresponding authors

Correspondence to Yiheng Tu or Li Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Ulrike Bingel, Giulia Liberati and Yuan B. Peng for their contribution to the peer review of this work. Peer reviewer reports are available. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Li, Z., Zhang, L. et al. Pain-preferential thalamocortical neural dynamics across species. Nat Hum Behav 8, 149–163 (2024). https://doi.org/10.1038/s41562-023-01714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01714-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing