Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Moral foundations elicit shared and dissociable cortical activation modulated by political ideology

Abstract

Moral foundations theory (MFT) holds that moral judgements are driven by modular and ideologically variable moral foundations but where and how these foundations are represented in the brain and shaped by political beliefs remains an open question. Using a moral vignette judgement task (n = 64), we probed the neural (dis)unity of moral foundations. Univariate analyses revealed that moral judgement of moral foundations, versus conventional norms, reliably recruits core areas implicated in theory of mind. Yet, multivariate pattern analysis demonstrated that each moral foundation elicits dissociable neural representations distributed throughout the cortex. As predicted by MFT, individuals’ liberal or conservative orientation modulated neural responses to moral foundations. Our results confirm that each moral foundation recruits domain-general mechanisms of social cognition but also has a dissociable neural signature malleable by sociomoral experience. We discuss these findings in view of unified versus dissociable accounts of morality and their neurological support for MFT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moral judgement task and behavioural results.
Fig. 2: Results of whole-brain univariate analyses.
Fig. 3: Multivoxel pattern classification of MFVs.
Fig. 4: Cross-decoding of moral wrongness ratings.
Fig. 5: Neural representational mapping of moral foundations.
Fig. 6: Ability of each candidate RDM to predict reference RDMs.
Fig. 7: Political ideology shapes processing of moral foundations.

Similar content being viewed by others

Data availability

The behavioural data that support the findings of this study as well as the Supplemental Information and experimental stimuli are available at The Open Science Framework platform (https://osf.io/dfmu6/). The meta-analytic map associated with the term ‘moral’ can be retrieved from neurosynth: https://www.neurosynth.org/analyses/terms/moral/. ROI were selected from a parcellation created using a whole-brain parcellation based on meta-analytic functional co-activation of the neurosynth database (parcellation available at https://neurovault.org/images/395092/). MRI data are available upon request. Our IRB approval states that these data can be shared for the purpose of reproducing or extending our results by researchers who agree to participant protection and privacy stipulations.

Code availability

All custom code required to reproduce the results in this paper can be found at https://github.com/medianeuroscience/mft_vignettes.

References

  1. Graham, J. et al. in Atlas of Moral Psychology (eds Gray, K. & Graham, J.) 211–222 (Guilford Press, 2018).

  2. Sinnott-Armstrong, W. & Wheatley, T. The disunity of morality and why it matters to philosophy. Monist 95, 355–377 (2012).

    Google Scholar 

  3. Kohlberg, L. in Handbook of Socialization (ed. Goslin, D.) 347– 480 (Academic Press, 1969).

  4. Gray, K., Schein, C. & Ward, A. F. The myth of harmless wrongs in moral cognition: automatic dyadic completion from sin to suffering. J. Exp. Psychol. Gen. 143, 1600–1615 (2014).

    PubMed  Google Scholar 

  5. Gray, K., Young, L. & Waytz, A. Mind perception is the essence of morality. Psychol. Inq. 23, 101–124 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Parkinson, C. et al. Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. J. Cogn. Neurosci. 23, 3162–3180 (2011).

    PubMed  Google Scholar 

  7. Prinz, J. J. in Moral Psychology (ed. Sinnott-Armstrong, W.) 267–406 (MIT Press, 2008).

  8. Tsoi, L., Dungan, J. A., Chakroff, A. & Young, L. L. Neural substrates for moral judgments of psychological versus physical harm. Soc. Cogn. Affect. Neurosci. 13, 460–470 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Wasserman, E. A., Chakroff, A., Saxe, R. & Young, L. Illuminating the conceptual structure of the space of moral violations with searchlight representational similarity analysis. NeuroImage 159, 371–387 (2017).

    CAS  PubMed  Google Scholar 

  10. Graham, J. et al. in Advances in Experimental Social Psychology Vol. 47, 55–130 (eds Zanna, M. P. et al.) (Academic Press, 2013).

  11. Greenwald, A. G. There is nothing so theoretical as a good method. Perspect. Psychol. Sci. 7, 99–108 (2012).

    PubMed  Google Scholar 

  12. Weber, R., Fisher, J. T., Hopp, F. R. & Lonergan, C. Taking messages into the magnet: method–theory synergy in communication neuroscience. Commun. Monogr. 85, 81–102 (2018).

    Google Scholar 

  13. Haidt, J. The new synthesis in moral psychology. Science 316, 998–1002 (2007).

    CAS  PubMed  Google Scholar 

  14. Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sperber, D. in The Innate Mind: Structure and Contents (eds Carruthers, P. et al.) 53–68 (Oxford Univ. Press, 2005).

  16. Cosmides, L. & Tooby, J. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds Hirschfeld, L. A. & Gelman, S. A.) 85–116 (Cambridge Univ. Press, 1994).

  17. Suhler, C. L. & Churchland, P. Can innate, modular ‘foundations’ explain morality? Challenges for Haidt’s moral foundations theory. J. Cogn. Neurosci. 23, 2103–2116 (2011).

    PubMed  Google Scholar 

  18. Haidt, J. & Joseph, C. How moral foundations theory succeeded in building on sand: a response to Suhler and Churchland. J. Cogn. Neurosci. 23, 2117–2122 (2011).

    Google Scholar 

  19. Eres, R., Louis, W. R. & Molenberghs, P. Common and distinct neural networks involved in fMRI studies investigating morality: an ALE meta-analysis. Soc. Neurosci. 13, 384–398 (2018).

    PubMed  Google Scholar 

  20. Greene, J. & Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002).

    PubMed  Google Scholar 

  21. Han, H. Neural correlates of moral sensitivity and moral judgment associated with brain circuitries of selfhood: a meta-analysis. J. Moral Educ. 46, 97–113 (2017).

    Google Scholar 

  22. Sevinc, G. & Spreng, R. N. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions. PLoS ONE 9, e87427 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Graham, J., Haidt, J. & Nosek, B. A. Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96, 1029–1046 (2009).

    PubMed  Google Scholar 

  24. Kivikangas, J. M., Fernández-Castilla, B., Järvelä, S., Ravaja, N. & Lönnqvist, J.-E. Moral foundations and political orientation: systematic review and meta-analysis. Psychol. Bull. 147, 55–94 (2021).

    PubMed  Google Scholar 

  25. Lewis, G. J., Kanai, R., Bates, T. C. & Rees, G. Moral values are associated with individual differences in regional brain volume. J. Cogn. Neurosci. 24, 1657–1663 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Nash, K., Baumgartner, T. & Knoch, D. Group-focused morality is associated with limited conflict detection and resolution capacity: neuroanatomical evidence. Biol. Psychol. 123, 235–240 (2017).

    PubMed  Google Scholar 

  27. Clifford, S., Iyengar, V., Cabeza, R. & Sinnott-Armstrong, W. Moral foundations vignettes: a standardized stimulus database of scenarios based on moral foundations theory. Behav. Res. Methods 47, 1178–1198 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Sevinc, G., Gurvit, H. & Spreng, R. N. Salience network engagement with the detection of morally laden information. Soc. Cogn. Affect. Neurosci. 12, 1118–1127 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J. B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).

    PubMed  Google Scholar 

  30. Feldman Hall, O. & Mobbs, D. in Brain Mapping: An Encyclopedic Reference (eds Toga, A. W. & Lieberman, M. D.) 205–210 (Elsevier, 2015).

  31. Young, L. & Dungan, J. Where in the brain is morality? Everywhere and maybe nowhere. Soc. Neurosci. 7, 1–10 (2012).

    PubMed  Google Scholar 

  32. Young, L. & Saxe, R. An FMRI investigation of spontaneous mental state inference for moral judgment. J. Cogn. Neurosci. 21, 1396–1405 (2009).

    PubMed  Google Scholar 

  33. Young, L., Scholz, J. & Saxe, R. Neural evidence for ‘intuitive prosecution’: the use of mental state information for negative moral verdicts. Soc. Neurosci. 6, 302–315 (2011).

    PubMed  Google Scholar 

  34. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    PubMed  Google Scholar 

  35. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pereira, F. & Botvinick, M. Information mapping with pattern classifiers: a comparative study. Neuroimage 56, 476–496 (2011).

    PubMed  Google Scholar 

  39. Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 24, 4 (2008).

    Google Scholar 

  40. Reimers, N. & Gurevych, I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. Preprint at https://arxiv.org/abs/1908.10084(2019).

  41. Diedrichsen, J. et al. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Preprint at https://arxiv.org/abs/2007.02789 (2020).

  42. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lescroart, M. D. & Gallant, J. L. Human scene-selective areas represent 3D configurations of surfaces. Neuron 101, 178–192 (2019).

    CAS  PubMed  Google Scholar 

  44. Gantman, A., Devraj-Kizuk, S., Mende-Siedlecki, P., Van Bavel, J. J. & Mathewson, K. E. The time course of moral perception: an ERP investigation of the moral pop-out effect. Soc. Cogn. Affect. Neurosci. 15, 235–246 (2020).

    PubMed  PubMed Central  Google Scholar 

  45. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Amit, E. & Greene, J. D. You see, the ends don’t justify the means: visual imagery and moral judgment. Psychol. Sci. 23, 861–868 (2012).

    PubMed  Google Scholar 

  47. Caruso, E. M. & Gino, F. Blind ethics: closing one’s eyes polarizes moral judgments and discourages dishonest behavior. Cognition 118, 280–285 (2011).

    PubMed  Google Scholar 

  48. Kahane, G. et al. The neural basis of intuitive and counterintuitive moral judgment. Soc. Cogn. Affect. Neurosci. 7, 393–402 (2012).

    PubMed  Google Scholar 

  49. Graham, J. et al. Mapping the moral domain. J. Pers. Soc. Psychol. 101, 366 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. McFarquhar, M. Modeling group-level repeated measurements of neuroimaging data using the univariate general linear model. Front. Neurosci. 13, 352 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Heath, S. et al. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study. BMC Neurosci. 13, 1–19 (2012).

    Google Scholar 

  52. Brunet, E., Sarfati, Y., Hardy-Baylé, M. C. & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11, 157–166 (2000).

    CAS  PubMed  Google Scholar 

  53. Leong, Y. C., Chen, J., Willer, R. & Zaki, J. Conservative and liberal attitudes drive polarized neural responses to political content. Proc. Natl Acad. Sci. USA 117, 27731–27739 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanai, R., Feilden, T., Firth, C. & Rees, G. Political orientations are correlated with brain structure in young adults. Curr. Biol. 21, 677–680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    PubMed  Google Scholar 

  56. Northoff, G. et al. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    PubMed  Google Scholar 

  57. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    CAS  PubMed  Google Scholar 

  58. Graham, J. Explaining away differences in moral judgment: comment on Gray and Keeney (2015). Soc. Psychol. Pers. Sci. 6, 869–873 (2015).

    Google Scholar 

  59. Kragel, P. A. & LaBar, K. S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Haidt, J., & Joseph, C. in The Innate Mind (eds Carruthers, P. et al.) 367–391 (Oxford Univ. Press, 2007).

  62. Sinnott-Armstrong, W. in Moral Brains: The Neuroscience of Morality (ed. Liao, S. M.) 331–354 (Oxford Univ. Press, 2016).

  63. Horikawa, T. & Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8, 15037 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gantman, A. P. & Van Bavel, J. J. Moral perception. Trends Cogn. Sci. 19, 631–633 (2015).

    PubMed  Google Scholar 

  65. Amodio, D. M., Jost, J. T., Master, S. L. & Yee, C. M. Neurocognitive correlates of liberalism and conservatism. Nat. Neurosci. 10, 1246–1247 (2007).

    CAS  PubMed  Google Scholar 

  66. Doğruyol, B., Alper, S. & Yilmaz, O. The five-factor model of the moral foundations theory is stable across WEIRD and non-WEIRD cultures. Pers. Individ. Diff. 151, 109547 (2019).

    Google Scholar 

  67. Atari, M. et al. Morality beyond the WEIRD: how the nomological network of morality varies across cultures. Preprint at https://psyarxiv.com/q6c9r/ (2022).

  68. Crone, D. L., Bode, S., Murawski, C. & Laham, S. M. The socio-moral image database (SMID): a novel stimulus set for the study of social, moral and affective processes. PLoS ONE 13, e0190954 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. McCurrie, C. H., Crone, D. L., Bigelow, F. & Laham, S. M. Moral and affective film set (MAAFS): a normed moral video database. PLoS ONE 13, e0206604 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Schein, C. The importance of context in moral judgments. Perspect. Psychol. Sci. 15, 207–215 (2020).

    PubMed  Google Scholar 

  71. Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer International Publishing, 2016).

  72. McCaffrey, J. & Wright, J. in Neuroscience and Philosophy (eds De Brigard, F. & Sinnott-Armstrong, W.) 427–466 (MIT Press, 2022).

  73. Sullivan, J. A. Coordinated pluralism as a means to facilitate integrative taxonomies of cognition. Philos. Explor. 20, 129–145 (2017).

    Google Scholar 

  74. Christensen, R. H. B. Analysis of Ordinal Data with Cumulative Link Models—Estimation with the R-package Ordinal (2015); http://people.vcu.edu/~dbandyop/BIOS625/CLM_R.pdf (R Development Core Team, 2011).

  75. Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-24. 2014 (2015).

  76. Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  77. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    CAS  PubMed  Google Scholar 

  78. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    CAS  PubMed  Google Scholar 

  81. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS  PubMed  Google Scholar 

  82. Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased non-linear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).

  83. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    CAS  PubMed  Google Scholar 

  84. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    PubMed  Google Scholar 

  85. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    PubMed  Google Scholar 

  86. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).

    CAS  PubMed  Google Scholar 

  87. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    PubMed  Google Scholar 

  88. Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    PubMed  Google Scholar 

  89. Lanczos, C. Evaluation of noisy data. J. Soc. Ind. Appl. Math. B 1, 76–85 (1964).

    Google Scholar 

  90. Notter, M. P. et al. AtlasReader: a Python package to generate coordinate tables, region labels, and informative figures from statistical MRI images. J. Open Source Softw. 4, 1257 (2019).

    Google Scholar 

  91. Gale, D. J., de Wael, R. V., Benkarim, O. & Bernhardt, B. Surfplot: publication-ready brain surface figures (v0.1.0). Zenodo https://doi.org/10.5281/zenodo.5567926 (2021).

  92. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).

    PubMed  PubMed Central  Google Scholar 

  93. Chang, L., Jolly, E., Cheong, J. H., Burnashev, A. & Chen, A. cosanlab/nltools: 0.3.11 Zenodo https://zenodo.org/record/2229813(2018).

  94. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Schütt, H. H., Lin, B., Diedrichsen, J. & Kriegeskorte, N. Python representational similarity analysis toolbox (rsatoolbox). Github https://github.com/rsagroup/rsatoolbox/ (2019).

  97. Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016).

    PubMed  Google Scholar 

  98. Schütt, H. H., Kipnis, A. D., Diedrichsen, J. & Kriegeskorte, N. Statistical inference on representational geometries. Preprint at https://arxiv.org/abs/2112.09200 (2021).

  99. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.R.H. was supported by a George D. McCune Dissertation fellowship, Department of Communication, University of California Santa Barbara. R.W. acquired funding from the Army Research Lab, grant no. W911NF-15-2-0115. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.R.H., O.A., S.G., W.S.A. and R.W. conceived of this work. F.R.H., J.T.F. and R.W. undertook data curation. O.A. and R.W. conducted the investigation. F.R.H. and R.W. did the formal analysis. F.R.H. produced the visualizations. O.A., J.T.F. and R.W. were responsible for validation. R.W. undertook supervision, project administration and funding acquisition. F.R.H. wrote the original paper. O.A., J.T.F., S.G., W.S.A. and R.W. reviewed and edited the final paper.

Corresponding author

Correspondence to René Weber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Lily Tsoi, Jonathan Haidt and Mark Thornton for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–4.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopp, F.R., Amir, O., Fisher, J.T. et al. Moral foundations elicit shared and dissociable cortical activation modulated by political ideology. Nat Hum Behav 7, 2182–2198 (2023). https://doi.org/10.1038/s41562-023-01693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01693-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing