Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexible social inference facilitates targeted social learning when rewards are not observable

Abstract

Groups coordinate more effectively when individuals are able to learn from others’ successes. But acquiring such knowledge is not always easy, especially in real-world environments where success is hidden from public view. We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others’ underlying knowledge and success from observable trajectories of behaviour. We compared our social inference model against simpler heuristics in three studies of human behaviour in a collective-sensing task. Experiment 1 demonstrated that average performance improved as a function of group size at a rate greater than predicted by heuristic models. Experiment 2 introduced artificial agents to evaluate how individuals selectively rely on social information. Experiment 3 generalized these findings to a more complex reward landscape. Taken together, our findings provide insight into the relationship between individual social cognition and the flexibility of collective behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example states of the collective-sensing task used in computational simulations and first experiment.
Fig. 2: Results of simulations and first experiment.
Fig. 3: Design of second experiment.
Fig. 4: Results of second experiment.
Fig. 5: Results of third experiment.
Fig. 6: State-based analysis of behaviour in third experiment.

Similar content being viewed by others

Data availability

All data are available at https://github.com/hawkrobe/emergent-sensing.

Code availability

All experiment and analysis code are available at https://github.com/hawkrobe/emergent-sensing.

References

  1. Laland, K. N. Social learning strategies. Learn. Behav. 32, 4–14 (2004).

    Article  PubMed  Google Scholar 

  2. Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  3. Rendell, L. et al. Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15, 68–76 (2011).

    Article  PubMed  Google Scholar 

  4. Molleman, L., Van den Berg, P. & Weissing, F. J. Consistent individual differences in human social learning strategies. Nat. Commun. 5, 3570 (2014).

    Article  PubMed  Google Scholar 

  5. Canteloup, C., Hoppitt, W. & van de Waal, E. Wild primates copy higher-ranked individuals in a social transmission experiment. Nat. Commun. 11, 459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laland, K. N. Darwin’s Unfinished Symphony (Princeton Univ. Press, 2017).

    Book  Google Scholar 

  7. Rogers, A. R. Does biology constrain culture? Am. Anthropol. 90, 819–831 (1988).

    Article  Google Scholar 

  8. Kameda, T. & Nakanishi, D. Does social/cultural learning increase human adaptability? Rogers’s question revisited. Evol. Hum. Behav. 24, 242–260 (2003).

    Article  Google Scholar 

  9. Boyd, R. & Richerson, P. J. Why does culture increase human adaptability? Ethol. Sociobiol. 16, 125–143 (1995).

    Article  Google Scholar 

  10. Kendal, R. L., Coolen, I., van Bergen, Y. & Laland, K. N. Trade-offs in the adaptive use of social and asocial learning. Adv. Study Behav. 35, 333–379 (2005).

    Article  Google Scholar 

  11. Heyes, C. Blackboxing: social learning strategies and cultural evolution. Phil. Trans. R. Soc. B 371, 20150369 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kendal, R. L. et al. Social learning strategies: bridge-building between fields. Trends Cogn. Sci. 22, 651–665 (2018).

    Article  PubMed  Google Scholar 

  13. McElreath, R. et al. Beyond existence and aiming outside the laboratory: estimating frequency-dependent and pay-off-biased social learning strategies. Phil. Trans. R. Soc. B 363, 3515–3528 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deffner, D., Kleinow, V. & McElreath, R. Dynamic social learning in temporally and spatially variable environments. R. Soc. Open Sci. 7, 200734 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Najar, A., Bonnet, E., Bahrami, B. & Palminteri, S. The actions of others act as a pseudo-reward to drive imitation in the context of social reinforcement learning. PLoS Biol. 18, e3001028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toyokawa, W., Whalen, A. & Laland, K. N. Social learning strategies regulate the wisdom and madness of interactive crowds. Nat. Hum. Behav. 3, 183–193 (2019).

    Article  PubMed  Google Scholar 

  17. Heyes, C. Who knows? Metacognitive social learning strategies. Trends Cogn. Sci. 20, 204–213 (2016).

    Article  PubMed  Google Scholar 

  18. Shafto, P., Goodman, N. D. & Frank, M. C. Learning from others: the consequences of psychological reasoning for human learning. Perspect. Psychol. Sci. 7, 341–351 (2012).

    Article  PubMed  Google Scholar 

  19. Behrens, T. E., Hunt, L. T., Woolrich, M. W. & Rushworth, M. F. Associative learning of social value. Nature 456, 245–249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heyes, C. What’s social about social learning? J. Comp. Psychol. 126, 193–202 (2012).

    Article  PubMed  Google Scholar 

  21. Heyes, C. Simple minds: a qualified defence of associative learning. Phil. Trans. R. Soc. B 367, 2695–2703 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Engel, D., Woolley, A. W., Jing, L. X., Chabris, C. F. & Malone, T. W. Reading the mind in the eyes or reading between the lines? Theory of mind predicts collective intelligence equally well online and face-to-face. PLoS ONE 9, e115212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schlag, K. H. Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. J. Econ. Theory 78, 130–156 (1998).

    Article  Google Scholar 

  25. Lazer, D. & Friedman, A. The network structure of exploration and exploitation. Adm. Sci. Q. 52, 667–694 (2007).

    Article  Google Scholar 

  26. Rendell, L. et al. Why copy others? Insights from the social learning strategies tournament. Science 328, 208–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mason, W., Jones, A. & Goldstone, R. L. Propagation of innovations in networked groups. J. Exp. Psychol. 137, 422 (2008).

    Article  Google Scholar 

  28. Mesoudi, A. An experimental simulation of the ‘copy-successful-individuals’ cultural learning strategy: adaptive landscapes, producer–scrounger dynamics, and informational access costs. Evol. Hum. Behav. 29, 350–363 (2008).

    Article  Google Scholar 

  29. Mason, W. & Watts, D. J. Collaborative learning in networks. Proc. Natl Acad. Sci. USA 109, 764–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Derex, M., Beugin, M.-P., Godelle, B. & Raymond, M. Experimental evidence for the influence of group size on cultural complexity. Nature 503, 389–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Wegner, D. M. in Theories of Group Behavior (eds Mullen, B. & Goethals, G. R.) 185–208 (Springer, 1987).

  32. Peltokorpi, V. & Hood, A. C. Communication in theory and research on transactive memory systems: a literature review. Top. Cogn. Sci. 11, 644–667 (2019).

    Article  PubMed  Google Scholar 

  33. Wisdom, T. N., Song, X. & Goldstone, R. L. Social learning strategies in networked groups. Cogn. Sci. 37, 1383–1425 (2013).

    Article  PubMed  Google Scholar 

  34. Baker, C. L., Jara-Ettinger, J., Saxe, R. & Tenenbaum, J. B. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1, 0064 (2017).

    Article  Google Scholar 

  35. Jara-Ettinger, J., Gweon, H., Schulz, L. E. & Tenenbaum, J. B. The naïve utility calculus: computational principles underlying commonsense psychology. Trends Cogn. Sci. 20, 589–604 (2016).

    Article  PubMed  Google Scholar 

  36. Wood, L. A., Kendal, R. L. & Flynn, E. G. Whom do children copy? Model-based biases in social learning. Dev. Rev. 33, 341–356 (2013).

    Article  Google Scholar 

  37. Sobel, D. M. & Kushnir, T. Knowledge matters: how children evaluate the reliability of testimony as a process of rational inference. Psychol. Rev. 120, 779 (2013).

    Article  PubMed  Google Scholar 

  38. Poulin-Dubois, D. & Brosseau-Liard, P. The developmental origins of selective social learning. Curr. Dir. Psychol. Sci. 25, 60–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mills, C. M. & Landrum, A. R. Learning who knows what: children adjust their inquiry to gather information from others. Front. Psychol. 7, 951 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hawthorne-Madell, D. & Goodman, N. D. Reasoning about social sources to learn from actions and outcomes. Decision 6, 17 (2019).

    Article  Google Scholar 

  41. Vélez, N. & Gweon, H. Integrating incomplete information with imperfect advice. Top. Cogn. Sci. 11, 299–315 (2019).

    Article  PubMed  Google Scholar 

  42. Whalen, A., Griffiths, T. L. & Buchsbaum, D. Sensitivity to shared information in social learning. Cogn. Sci. 42, 168–187 (2018).

    Article  PubMed  Google Scholar 

  43. Almaatouq, A., Alsobay, M., Yin, M. & Watts, D. J. Task complexity moderates group synergy. Proc. Natl Acad. Sci. USA 118, e2101062118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Almaatouq, A. et al. Beyond playing 20 questions with nature: integrative experiment design in the social and behavioral sciences. Behav. Brain Sci. https://doi.org/10.1017/S0140525X22002874 (2022).

  45. Berdahl, A. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B 373, 20170009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dechaume-Moncharmont, F.-X. et al. The hidden cost of information in collective foraging. Proc. R. Soc. B 272, 1689–1695 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goldstone, R. L., Ashpole, B. C. & Roberts, M. E. Knowledge of resources and competitors in human foraging. Psychon. Bull. Rev. 12, 81–87 (2005).

    Article  PubMed  Google Scholar 

  48. Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Bikhchandani, S., Hirshleifer, D. & Welch, I. Learning from the behavior of others: conformity, fads, and informational cascades. J. Econ. Perspect. 12, 151–170 (1998).

    Article  Google Scholar 

  50. Anderson, L. R. & Holt, C. A. Information cascades in the laboratory. Am. Econ. Rev. 87, 847–862 (1997).

    Google Scholar 

  51. Pérez-Escudero, A. & de Polavieja, G. G. Collective animal behavior from Bayesian estimation and probability matching. PLoS Comput. Biol. 7, e1002282 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karpas, E. D., Shklarsh, A. & Schneidman, E. Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents. Proc. Natl Acad. Sci. USA 114, 5589–5594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mann, R. P. Collective decision-making by rational individuals. Proc. Natl Acad. Sci. USA 115, E10387–E10396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mann, R. P. Collective decision-making by rational agents with differing preferences. Proc. Natl Acad. Sci 117, 10388–10396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hein, A. M. et al. The evolution of distributed sensing and collective computation in animal populations. eLife 4, e10955 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Torney, C. J., Berdahl, A. & Couzin, I. D. Signalling and the evolution of cooperative foraging in dynamic environments. PLoS Comput. Biol. 7, e1002194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown, C. R. Social foraging in cliff swallows: local enhancement, risk sensitivity, competition and the avoidance of predators. Anim. Behav. 36, 780–792 (1988).

    Article  Google Scholar 

  58. Brown, C. R., Brown, M. B. & Shaffer, M. L. Food-sharing signals among socially foraging cliff swallows. Anim. Behav. 42, 551–564 (1991).

    Article  Google Scholar 

  59. Hawkins, R. D. Conducting real-time multiplayer experiments on the web. Behav. Res. Methods 47, 966–976 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

A preliminary version of our work reporting experiment 3 appeared at the 2015 Annual Conference of the Cognitive Science Society. This work was supported by the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award CCF-1231216, and NSF Graduate Research Fellowships under grant number 1122374 to P.M.K. and grant number DGE-114747 to R.D.H. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. A.M.B. was supported by the H. Mason Keeler Endowed Professorship in Sports Fisheries Management. Special thanks to C. Torney for providing the code to make the score field gradients, to H. Fang for assisting with analyses and to R. Goldstone for helpful feedback on the interpretation of our results.

Author information

Authors and Affiliations

Authors

Contributions

R.D.H., P.M.K., A.P., N.D.G. and J.B.T. formulated the study. R.D.H. and P.M.K. designed the experiments, implemented the experiments and analysed the data. R.D.H., P.M.K. and A.M.B. wrote the paper. All authors gave final approval for publication and agree to be held accountable for the work performed therein.

Corresponding author

Correspondence to Robert D. Hawkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Wataru Toyokawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawkins, R.D., Berdahl, A.M., Pentland, A.‘. et al. Flexible social inference facilitates targeted social learning when rewards are not observable. Nat Hum Behav 7, 1767–1776 (2023). https://doi.org/10.1038/s41562-023-01682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01682-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing