Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human and animal dominance hierarchies show a pyramidal structure guiding adult and infant social inferences

Abstract

This study investigates the structure of social hierarchies. We hypothesized that if social dominance relations serve to regulate conflicts over resources, then hierarchies should converge towards pyramidal shapes. Structural analyses and simulations confirmed this hypothesis, revealing a triadic-pyramidal motif across human and non-human hierarchies (114 species). Phylogenetic analyses showed that this pyramidal motif is widespread, with little influence of group size or phylogeny. Furthermore, nine experiments conducted in France found that human adults (N = 120) and infants (N = 120) draw inferences about dominance relations that are consistent with hierarchies’ pyramidal motif. By contrast, human participants do not draw equivalent inferences based on a tree-shaped pattern with a similar complexity to pyramids. In short, social hierarchies exhibit a pyramidal motif across a wide range of species and environments. From infancy, humans exploit this regularity to draw systematic inferences about unobserved dominance relations, using processes akin to formal reasoning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural predictions based on the conflict-regulatory hypothesis.
Fig. 2: Assessment of pyramidal shape per taxonomic category (N = 318 independent groups).
Fig. 3: Timeline of trials testing adults on dominance, friendship or enmity relations.
Fig. 4: Examples of pyramidal and tree-based inferences.
Fig. 5: Network structures and results of studies 2–4.
Fig. 6: Network structures and events used in studies 5a, 5b, 6a, 6b, 7a and 7b.
Fig. 7: Looking time per situation (coherent versus incoherent) and study (N = 20 per study).
Fig. 8: Transition probability graph for triadic structures with two or three relations.

Similar content being viewed by others

Data availability

All data are available at https://doi.org/10.17605/OSF.IO/PK7BG.

Code availability

All analysis scripts are available at https://doi.org/10.17605/OSF.IO/PK7BG.

References

  1. Krieger, N. Ladders, pyramids and champagne: the iconography of health inequities. J. Epidemiol. Community Health 62, 1098–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, S., Greer, L. L., Halevy, N. & Van Bunderen, L. On ladders and pyramids: hierarchy’s shape determines relationships and performance in groups. Personal. Soc. Psychol. Bull. 45, 1717–1733 (2019).

    Article  Google Scholar 

  3. Gruenfeld, D. H. & Tiedens, L. Z. in Handbook of Social Psychology (eds Fiske, S. T. et al.) 1252–1287 (John Wiley and Sons, 2010).

  4. Blau, P. M. A macrosociological theory of social structure. Am. J. Sociol. 83, 26–54 (1977).

    Article  Google Scholar 

  5. Wellman, N., Applegate, J. M., Harlow, J. & Johnston, E. W. Beyond the pyramid: alternative formal hierarchical structures and team performance. Acad. Manag. J. 63, 997–1027 (2020).

    Article  Google Scholar 

  6. Hand, J. L. Resolution of social conflicts: dominance, egalitarianism, spheres of dominance, and game theory. Q. Rev. Biol. 61, 201–220 (1986).

    Article  Google Scholar 

  7. Weber, M. in From Max Weber: Essays in Sociology (eds Gerth, H. H. and Wright Mills, C.) 180–195 (Oxford Univ. Press, 1946).

  8. Strauss, E. D., Curley, J. P., Shizuka, D. & Hobson, E. A. The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 7923–7932 (Springer, 2016).

  10. Hawley, P. H. The ontogenesis of social dominance: a strategy-based evolutionary perspective. Dev. Rev. 19, 97–132 (1999).

    Article  Google Scholar 

  11. Hawley, P. H. Ontogeny and social dominance: a developmental view of human power patterns. Evol. Psychol. 12, 318–342 (2014).

    Article  PubMed  Google Scholar 

  12. Hawley, P. H. & Bower, A. R. in Handbook of Peer Interactions, Relationships, and Groups 106–122 (Guilford, 2018).

  13. Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 41–44 (Springer, 2016).

  14. Tibbetts, E. A., Pardo-Sanchez, J. & Weise, C. The establishment and maintenance of dominance hierarchies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flack, J. C. & Krakauer, D. C. Encoding power in communication networks. Am. Nat. 168, E87–E102 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, J. M. The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209–221 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, J. & Price, G. R. The logic of animal conflict. Nature 246, 15–18 (1973).

    Article  Google Scholar 

  18. Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–429 (1981).

    Article  Google Scholar 

  19. Holekamp, K. E. & Strauss, E. D. Aggression and dominance: an interdisciplinary overview. Curr. Opin. Behav. Sci. 12, 44–51 (2016).

    Article  Google Scholar 

  20. Shizuka, D. & McDonald, D. B. A social network perspective on measurements of dominance hierarchies. Anim. Behav. 83, 925–934 (2012).

    Article  Google Scholar 

  21. Neumann, C., McDonald, D. B. & Shizuka, D. Dominance ranks, dominance ratings and linear hierarchies: a critique. Anim. Behav. 144, e1–e16 (2018).

    Article  Google Scholar 

  22. Deslippe, R. J., M’Closkey, R. T., Dajczak, S. P. & Szpak, C. P. A quantitative study of the social behavior of tree lizards, Urosaurus ornatus. J. Herpetol. 24, 337–341 (1990).

    Article  Google Scholar 

  23. Uhrich, J. The social hierarchy in albino mice. J. Comp. Psychol. 25, 373–413 (1938).

    Article  Google Scholar 

  24. van Hooff, J. A. R. A. M. & Wensing, J. A. B. in Man and Wolf: Advances, Issues, and Problems in Captive Wolf Research (ed. Frank, H.) 219–252 (Dr W Junk Publishers, 1987).

  25. Van Doorn, A. & Heringa, J. The ontogeny of a dominance hierarchy in colonies of the bumblebee Bombus terrestris (Hymenoptera, Apidae). Insectes Soc. 33, 3–25 (1986).

    Article  Google Scholar 

  26. Kinsey, K. P. Social behaviour in confined populations of the Allegheny woodrat, Neotoma floridana magister. Anim. Behav. 24, 181–187 (1976).

    Article  Google Scholar 

  27. Shimoji, H., Abe, M. S., Tsuji, K. & Masuda, N. Global network structure of dominance hierarchy of ant workers. J. R. Soc. Interface 11, 20140599 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shizuka, D. & McDonald, D. B. The network motif architecture of dominance hierarchies. J. R. Soc. Interface 12, 20150080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen Zeng, T., Cheng, J. T. & Henrich, J. Dominance in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200451 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chase, I. D. Social process and hierarchy formation in small groups: a comparative perspective. Am. Sociol. Rev. 45, 905–924 (1980).

    Article  Google Scholar 

  31. Redhead, D. & Power, E. A. Social hierarchies and social networks in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200440 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dubreuil, B. Human Evolution and the Origins of Hierarchies: The State of Nature (Cambridge Univ. Press, 2010).

  33. Thomsen, L. & Carey, S. in Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (eds Banaji, M. R. and Gelman, S. A.) 17–22 (Oxford Univ. Press, 2013).

  34. Fiske, A. P. Structures of Social Life: The Four Elementary Forms of Human Relations: Communal Sharing, Authority Ranking, Equality Matching, Market Pricing (Free Press, 1991).

  35. Fiske, A. P. The four elementary forms of sociality: framework for a unified theory of social relations. Psychol. Rev. 99, 689–783 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Cheney, D. L. & Seyfarth, R. M. Baboon Metaphysics (Univ. Chicago Press, 2008).

  37. Bergman, T. J., Beehner, J. C., Cheney, D. L. & Seyfarth, R. M. Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Basyouni, R. & Parkinson, C. Mapping the social landscape: tracking patterns of interpersonal relationships. Trends Cogn. Sci. 26, 204–221 (2022).

    Article  PubMed  Google Scholar 

  39. Cummins, D. D. How the social environment shaped the evolution of mind. Synthese 122, 3–28 (2000).

    Article  Google Scholar 

  40. Cummins, D. D. Dominance hierarchies and the evolution of human reasoning. Minds Mach. 6, 463–480 (1996).

    Article  Google Scholar 

  41. Fernald, R. D. Cognitive skills and the evolution of social systems. J. Exp. Biol. 220, 103–113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 2104–2112 (Springer, 2016).

  43. Strayer, F. F. & Strayer, J. An ethological analysis of social agonism and dominance relations among preschool children. Child Dev. 47, 980–989 (1976).

    Article  Google Scholar 

  44. Gazes, R. P., Hampton, R. R. & Lourenco, S. F. Transitive inference of social dominance by human infants. Dev. Sci. 20, e12367 (2017).

    Article  Google Scholar 

  45. Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Mascaro, O. & Csibra, G. Human infants’ learning of social structures: the case of dominance hierarchy. Psychol. Sci. 25, 250–255 (2014).

    Article  PubMed  Google Scholar 

  47. Paz-y-Miño, C. G., Bond, A. B., Kamil, A. C. & Balda, R. P. Pinyon jays use transitive inference to predict social dominance. Nature 430, 778–781 (2004).

    Article  Google Scholar 

  48. De Soto, C. B. Learning a social structure. J. Abnorm. Soc. Psychol. 60, 417–421 (1960).

    Article  PubMed  Google Scholar 

  49. Zitek, E. M. & Tiedens, L. Z. The fluency of social hierarchy: the ease with which hierarchical relationships are seen, remembered, learned, and liked. J. Pers. Soc. Psychol. 102, 98–115 (2012).

    Article  PubMed  Google Scholar 

  50. Strauss, E. D. et al. DomArchive: a century of published dominance data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200436 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Stone, L., Simberloff, D. & Artzy-Randrup, Y. Network motifs and their origins. PLoS Comput. Biol. 15, e1006749 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, N., Wan, Y., An, J., Gummerum, M. & Zhu, L. Power grabbed or granted: children’s allocation of resources in social power situations. J. Exp. Child Psychol. 210, 105192 (2021).

    Article  PubMed  Google Scholar 

  56. Zhang, X. et al. Material and relational asymmetry: the role of receivers’ wealth and power status in children’s resource allocation. J. Exp. Child Psychol. 208, 105147 (2021).

    Article  PubMed  Google Scholar 

  57. Charafeddine, R. et al. Children’s allocation of resources in social dominance situations. Dev. Psychol. 52, 1843–1857 (2016).

    Article  PubMed  Google Scholar 

  58. Enright, E. A., Alonso, D. J., Lee, B. M. & Olson, K. R. Children’s understanding and use of four dimensions of social status. J. Cogn. Dev. 21, 573–602 (2020).

    Article  Google Scholar 

  59. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).

    Article  Google Scholar 

  60. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Verbrugge, L. M. The structure of adult friendship choices. Soc. Forces 56, 576–597 (1977).

    Article  Google Scholar 

  62. Pratto, F., Sidanius, J. & Levin, S. Social dominance theory and the dynamics of intergroup relations: taking stock and looking forward. Eur. Rev. Soc. Psychol. 17, 271–320 (2006).

    Article  Google Scholar 

  63. Hartup, W. W. & Abecassis, M. in Blackwell Handbook of Childhood Social Development (eds Smith, P. K. and Hart, C. H.) 286–306 (Blackwell, 2002).

  64. Bas, J. & Sebastian-Galles, N. Infants’ representation of social hierarchies in absence of physical dominance. PLoS ONE 16, e0245450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Enright, E. A., Gweon, H. & Sommerville, J. A. ‘To the victor go the spoils’: infants expect resources to align with dominance structures. Cognition 164, 8–21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mascaro, O. & Csibra, G. Representation of stable social dominance relations by human infants. Proc. Natl Acad. Sci. USA 109, 6862–6867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Margoni, F., Baillargeon, R. & Surian, L. Infants distinguish between leaders and bullies. Proc. Natl Acad. Sci. USA 115, E8835–E8843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meng, X., Nakawake, Y., Nitta, H., Hashiya, K. & Moriguchi, Y. Space and rank: infants expect agents in higher position to be socially dominant. Proc. R. Soc. Lond. B Biol. Sci. 286, 20191674 (2019).

    Google Scholar 

  69. Meng, X. et al. Preverbal infants expect agents exhibiting counterintuitive capacities to gain access to contested resources. Sci. Rep. 11, 10884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pun, A., Birch, S. A. & Baron, A. S. The power of allies: infants’ expectations of social obligations during intergroup conflict. Cognition 211, 104630 (2021).

    Article  PubMed  Google Scholar 

  71. Pun, A., Birch, S. A. & Baron, A. S. Infants use relative numerical group size to infer social dominance. Proc. Natl Acad. Sci. USA 113, 2376–2381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pun, A., Birch, S. A. & Baron, A. S. Infants infer third-party social dominance relationships based on visual access to intergroup conflict. Sci. Rep. 12, 18250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thomas, A. J. & Sarnecka, B. W. Infants choose those who defer in conflicts. Curr. Biol. 29, 2183–2189 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Thomas, A. J., Thomsen, L., Lukowski, A. F., Abramyan, M. & Sarnecka, B. W. Toddlers prefer those who win but not when they win by force. Nat. Hum. Behav. 2, 662–669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Thomsen, L., Frankenhuis, W. E., Ingold-Smith, M. & Carey, S. Big and mighty: preverbal infants mentally represent social dominance. Science 331, 477–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bian, L., Sloane, S. & Baillargeon, R. Infants expect ingroup support to override fairness when resources are limited. Proc. Natl Acad. Sci. USA 115, 2705–2710 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jin, K. & Baillargeon, R. Infants possess an abstract expectation of ingroup support. Proc. Natl Acad. Sci. USA 114, 8199–8204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liberman, Z., Kinzler, K. D. & Woodward, A. L. Friends or foes: infants use shared evaluations to infer others’ social relationships. J. Exp. Psychol. Gen. 143, 966–971 (2014).

    Article  PubMed  Google Scholar 

  79. Liberman, Z., Woodward, A. L., Sullivan, K. R. & Kinzler, K. D. Early emerging system for reasoning about the social nature of food. Proc. Natl Acad. Sci. USA 113, 9480–9485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Powell, L. J. & Spelke, E. S. Preverbal infants expect members of social groups to act alike. Proc. Natl Acad. Sci. USA 110, E3965–E3972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Powell, L. J. & Spelke, E. S. Human infants’ understanding of social imitation: inferences of affiliation from third party observations. Cognition 170, 31–48 (2018).

    Article  PubMed  Google Scholar 

  82. Rhodes, M., Hetherington, C., Brink, K. & Wellman, H. M. Infants’ use of social partnerships to predict behavior. Dev. Sci. 18, 909–916 (2015).

    Article  PubMed  Google Scholar 

  83. Thomas, A. J., Saxe, R. & Spelke, E. S. Infants infer potential social partners by observing the interactions of their parent with unknown others. Proc. Natl Acad. Sci. USA 119, e2121390119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thomas, A. J., Woo, B., Nettle, D., Spelke, E. & Saxe, R. Early concepts of intimacy: young humans use saliva sharing to infer close relationships. Science 375, 311–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Aslin, R. N. Infant eyes: a window on cognitive development. Infancy 17, 126–140 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stahl, A. E. & Feigenson, L. Observing the unexpected enhances infants’ learning and exploration. Science 348, 91–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hamlin, J. K., Wynn, K. & Bloom, P. Social evaluation by preverbal infants. Nature 450, 557–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kanakogi, Y. et al. Third-party punishment by preverbal infants. Nat. Hum. Behav. 6, 1234–1242 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kanakogi, Y. et al. Preverbal infants affirm third-party interventions that protect victims from aggressors. Nat. Hum. Behav. 1, 0037 (2017).

    Article  Google Scholar 

  90. Kominsky, J. F., Lucca, K., Thomas, A. J., Frank, M. C. & Hamlin, J. K. Simplicity and validity in infant research. Cogn. Dev. 63, 101213 (2022).

    Article  Google Scholar 

  91. Chase, I. D. Dynamics of hierarchy formation: the sequential development of dominance relationships. Behaviour 80, 218–240 (1982).

    Article  Google Scholar 

  92. Chase, I. D. The sequential analysis of aggressive acts during hierarchy formation: an application of the ‘jigsaw puzzle’ approach. Anim. Behav. 33, 86–100 (1985).

    Article  Google Scholar 

  93. Zitek, E. M. & Phillips, L. T. Ease and control: the cognitive benefits of hierarchy. Curr. Opin. Psychol. 33, 131–135 (2020).

    Article  PubMed  Google Scholar 

  94. Moors, A. & De Houwer, J. Automatic processing of dominance and submissiveness. Exp. Psychol. 52, 296–302 (2005).

    Article  PubMed  Google Scholar 

  95. Ko, S. J., Sadler, M. S. & Galinsky, A. D. The sound of power: conveying and detecting hierarchical rank through voice. Psychol. Sci. 26, 3–14 (2015).

    Article  PubMed  Google Scholar 

  96. Phillips, L. T., Slepian, M. L. & Hughes, B. L. Perceiving groups: the people perception of diversity and hierarchy. J. Personal. Soc. Psychol. 114, 766–785 (2018).

    Article  Google Scholar 

  97. Pietraszewski, D. How the mind sees coalitional and group conflict: the evolutionary invariances of n-person conflict dynamics. Evol. Hum. Behav. 37, 470–480 (2016).

    Article  Google Scholar 

  98. Pietraszewski, D. Toward a computational theory of social groups: a finite set of cognitive primitives for representing any and all social groups in the context of conflict. Behav. Brain Sci. 45, e97 (2021).

    Article  PubMed  Google Scholar 

  99. Plusquellec, P., François, N., Boivin, M., Perusse, D. & Tremblay, R. E. Dominance among unfamiliar peers starts in infancy. Infant Ment. Health J. 28, 324–343 (2007).

    Article  PubMed  Google Scholar 

  100. Strayer, F. F. & Trudel, M. Developmental changes in the nature and function of social dominance among young children. Ethol. Sociobiol. 5, 279–295 (1984).

    Article  Google Scholar 

  101. Russon, A. E. & Waite, B. E. Patterns of dominance and imitation in an infant peer group. Ethol. Sociobiol. 12, 55–73 (1991).

    Article  Google Scholar 

  102. Hawley, P. H. & Little, T. D. On winning some and losing some: a social relations approach to social dominance in toddlers. Merrill-Palmer Q. 45, 185–214 (1999).

    Google Scholar 

  103. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl Acad. Sci. USA 105, 10687–10692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. Issues N. Rev. 19, 114–118 (2010).

    Article  Google Scholar 

  106. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  107. Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

  109. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Krupenye, C. & Hare, B. Bonobos prefer individuals that hinder others over those that help. Curr. Biol. 28, 280–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Bas, J., Sebastian-Galles, N., Csibra, G. & Mascaro, O. Infants’ representation of asymmetric social influence. J. Exp. Child Psychol. 226, 105564 (2023).

    Article  PubMed  Google Scholar 

  112. Csibra, G., Hernik, M., Mascaro, O., Tatone, D. & Lengyel, M. Statistical treatment of looking-time data. Dev. Psychol. 52, 521–536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the participants and their parents, M. Brun and A. Couderc for their help with data collection and coding, as well as all the members of the Laboratory on Language, Brain and Cognition (L2C2) and of the Integrative Neuroscience and Cognition Center (INCC) for their invaluable input at all stages of this research. This work was supported by a fellowship from the French National Research Agency (ANR) to O.M. (Foundtrust, ANR-21-CE28-0017). The funders had no role in study design, data collection and analysis, the decision to publish or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

O.M. supervised the project. O.M. and N.C. designed the network data analysis. O.M. and A.D. gathered children’s network data from the literature. N.C. implemented the network data analysis. O.M., N.G., H.P. and J.B.V.H. designed the experimental studies. N.G. and H.P. created the experimental materials. N.G., H.P. and A.D. collected and coded the experimental data. O.M. wrote the analysis script for experimental data. O.M. wrote the original draft. O.M., N.G., H.P., A.D., J.-B.V.H. and N.C. reviewed and edited the manuscript.

Corresponding author

Correspondence to Olivier Mascaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Denise D. Cummins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Normalized z-scores per triadic pattern and category (N = 318 independent groups).

We computed normalized z-scores for basic patterns that can occur in a dominance structure: triadic pyramids, triadic trees, chains, transitive triads, and circular triads. Data reveal a pyramidal motif, with an overrepresentation of pyramids in all taxonomic groups. The results also confirm that dominance relations tend to be transitive in all taxonomic groups, with an overrepresentation of transitive structures and an under-representation of chains and circular structures. Red dots and error bars indicate means and bootstrapped 95% CIs; vertical bars within boxes indicate medians, and boxes indicate the interquartile range; right whiskers represent data up to 1.5 times the interquartile range above the third quartile, and left whiskers represent data up to 1.5 times the interquartile range below the first quartile; Each grey dot represents data from one social group. P values were assessed with two-tailed one-sample Wilcoxon tests, and were corrected for multiple comparisons across taxonomic categories using the Holm-Bonferroni procedure. * p < .05, **p < 0.01, ***p < 0.001, ns: non-significant.

Extended Data Fig. 2 Average triadic pyramidal metric per species organized by phylogeny for primates species only (36 species, 100 groups).

We used the “10kTrees” phylogeny to estimate relatedness among primates105.

Extended Data Fig. 3 Average triadic pyramidal metric per species organized by phylogeny for all species (110 species, 311 groups).

We used a consensus tree from the Open Tree of Life (v.13.14, https://tree.opentreeoflife.org/about/synthesis-release/v13.4) to estimate relatedness among species.

Supplementary information

Supplementary Information

Supplementary analysis, methods, results and Tables 1–6.

Reporting Summary

Peer Review File

Supplementary Video 1

Familiarization videos for studies 5a, 6a and 7a (example).

Supplementary Video 2

Test videos for study 5a (example).

Supplementary Video 3

Familiarization videos for studies 5b, 6b and 7b (example).

Supplementary Video 4

Test videos for study 5b (example).

Supplementary Video 5

Test videos for studies 6a and 6b (example).

Supplementary Video 6

Test videos for studies 7a and 7b (example).

Supplementary Video 7

Long and short familiarization videos (example).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascaro, O., Goupil, N., Pantecouteau, H. et al. Human and animal dominance hierarchies show a pyramidal structure guiding adult and infant social inferences. Nat Hum Behav 7, 1294–1306 (2023). https://doi.org/10.1038/s41562-023-01634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01634-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing