Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence integration and decision confidence are modulated by stimulus consistency

Abstract

Evidence integration is a normative algorithm for choosing between alternatives with noisy evidence, which has been successful in accounting for vast amounts of behavioural and neural data. However, this mechanism has been challenged by non-integration heuristics, and tracking decision boundaries has proven elusive. Here we first show that the decision boundaries can be extracted using a model-free behavioural method termed decision classification boundary, which optimizes choice classification based on the accumulated evidence. Using this method, we provide direct support for evidence integration over non-integration heuristics, show that the decision boundaries collapse across time and identify an integration bias whereby incoming evidence is modulated based on its consistency with preceding information. This consistency bias, which is a form of pre-decision confirmation bias, was supported in four cross-domain experiments, showing that choice accuracy and decision confidence are modulated by stimulus consistency. Strikingly, despite its seeming sub-optimality, the consistency bias fosters performance by enhancing robustness to integration noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental paradigms and behavioural signature of integration to boundary.
Fig. 2: Model-free extraction of the decision boundaries.
Fig. 3: Results of experiments 1 and 2.
Fig. 4: Experimental paradigms in experiments 3 and 4.
Fig. 5: Results of experiments 3 and 4.
Fig. 6: Stimulus consistency and normativity.

Similar content being viewed by others

Data availability

The data that support the findings of this paper are available at https://osf.io/vywbx/.

Code availability

The codes used for all studies are available at https://osf.io/vywbx/.

References

  1. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  PubMed  Google Scholar 

  2. Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Moran, R. Optimal decision making in heterogeneous and biased environments. Psychon. Bull. Rev. 22, 38–53 (2015).

    Article  PubMed  Google Scholar 

  4. Wald, A. Foundations of a general theory of sequential decision functions. Econometrica 15, 279 (1947).

    Article  Google Scholar 

  5. Forstmann, B. U., Ratcliff, R. & Wagenmakers, E. J. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67, 641–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, S. D. & Heathcote, A. The simplest complete model of choice response time: linear ballistic accumulation. Cogn. Psychol. 57, 153–178 (2008).

    Article  PubMed  Google Scholar 

  7. Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  PubMed  Google Scholar 

  8. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Teodorescu, A. R. & Usher, M. Disentangling decision models: from independence to competition. Psychol. Rev. 120, 1–38 (2013).

    Article  PubMed  Google Scholar 

  10. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Vickers, D. Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13, 37–58 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Wickelgren, W. A. Speed–accuracy tradeoff and information processing dynamics. Acta Psychol. (Amst.) 41, 67–85 (1977).

    Article  Google Scholar 

  13. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mulder, M. J., van Maanen, L. & Forstmann, B. U. Perceptual decision neurosciences – a model-based review. Neuroscience 277, 872–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science 349, 184–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watson, A. B. Probability summation over time. Vis. Res. 19, 515–522 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Stine, G. M., Zylberberg, A., Ditterich, J. & Shadlen, M. N. Differentiating between integration and non-integration strategies in perceptual decision making. eLife 9, e55365 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Balci, F. et al. Acquisition of decision making criteria: reward rate ultimately beats accuracy. Attention Percept. Psychophys. 73, 640–657 (2011).

    Article  Google Scholar 

  19. Bogacz, R., Hu, P. T., Holmes, P. J. & Cohen, J. D. Do humans produce the speed-accuracy trade-off that maximizes reward rate? Q. J. Exp. Psychol. 63, 863–891 (2010).

    Article  Google Scholar 

  20. Palestro, J. J., Weichart, E., Sederberg, P. B. & Turner, B. M. Some task demands induce collapsing bounds: evidence from a behavioral analysis. Psychon. Bull. Rev. 25, 1225–1248 (2018).

    Article  PubMed  Google Scholar 

  21. Ditterich, J. Evidence for time-variant decision making. Eur. J. Neurosci. 24, 3628–3641 (2006).

    Article  PubMed  Google Scholar 

  22. Voskuilen, C., Ratcliff, R. & Smith, P. L. Comparing fixed and collapsing boundary versions of the diffusion model. J. Math. Psychol. 73, 59–79 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Glickman, M., Tsetsos, K. & Usher, M. Attentional selection mediates framing and risk-bias effects. Psychol. Sci. 29, 2010–2019 (2018).

    Article  PubMed  Google Scholar 

  24. Glickman, M. et al. The formation of preference in risky choice. PLoS Comput. Biol. 15, e1007201 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gluth, S., Kern, N., Kortmann, M. & Vitali, C. L. Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nat. Hum. Behav. 4, 634–645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Brehm, J. W. Postdecision changes in the desirability of alternatives. J. Abnorm. Soc. Psychol. 52, 384–389 (1956).

    Article  CAS  Google Scholar 

  28. Bronfman, Z. Z. et al. Decisions reduce sensitivity to subsequent information. Proc. R. Soc. B 282, 20150228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kappes, A., Harvey, A. H., Lohrenz, T., Montague, P. R. & Sharot, T. Confirmation bias in the utilization of others’ opinion strength. Nat. Neurosci. 23, 130–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Rollwage, M. et al. Confidence drives a neural confirmation bias. Nat. Commun. 11, 2634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Talluri, B. C., Urai, A. E., Tsetsos, K., Usher, M. & Donner, T. H. Confirmation bias through selective overweighting of choice-consistent evidence. Curr. Biol. 28, 3128–3135.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Spitzer, B., Waschke, L. & Summerfield, C. Selective overweighting of larger magnitudes during noisy numerical comparison. Nat. Hum. Behav. 1, 145 (2017).

    Article  PubMed  Google Scholar 

  33. Tsetsos, K. et al. Economic irrationality is optimal during noisy decision making. Proc. Natl Acad. Sci. USA 113, 3102–3107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glickman, M. & Usher, M. Integration to boundary in decisions between numerical sequences. Cognition 193, 104022 (2019).

    Article  PubMed  Google Scholar 

  35. Thura, D. & Cisek, P. Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J. Neurosci. 36, 938–956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thura, D. & Cisek, P. The basal ganglia do not select reach targets but control the urgency of commitment. Neuron 95, 1160–1170.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. van Maanen, L., Fontanesi, L., Hawkins, G. E. & Forstmann, B. U. Striatal activation reflects urgency in perceptual decision making. NeuroImage 139, 294–303 (2016).

    Article  PubMed  Google Scholar 

  38. Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R. & Brown, S. D. Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. J. Neurosci. 35, 2476–2484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher, R. A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936).

    Article  Google Scholar 

  40. McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition (Wiley, 2005).

  41. Dotan, D., Meyniel, F. & Dehaene, S. On-line confidence monitoring during decision making. Cognition 171, 112–121 (2018).

    Article  PubMed  Google Scholar 

  42. Usher, M., Tsetsos, K., Glickman, M. & Chater, N. Selective integration: an attentional theory of choice biases and adaptive choice. Curr. Dir. Psychol. Sci. 28, 552–559 (2019).

    Article  Google Scholar 

  43. Zeigenfuse, M. D., Pleskac, T. J. & Liu, T. Rapid decisions from experience. Cognition 131, 181–194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ossmy, O. et al. The timescale of perceptual evidence integration can be adapted to the environment. Curr. Biol. 23, 981–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Roe, R. M., Busemeyer, J. R. & Townsend, J. T. Multialternative decision field theory: a dynamic connectionist model of decision making. Psychol. Rev. 108, 370–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Balsdon, T., Wyart, V. & Mamassian, P. Confidence controls perceptual evidence accumulation. Nat. Commun. 11, 1753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eisen-Enosh, A., Farah, N., Burgansky-Eliash, Z., Polat, U. & Mandel, Y. Evaluation of critical flicker-fusion frequency measurement methods for the investigation of visual temporal resolution. Sci. Rep. 7, 15621 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ludwig, C. J. H., Gilchrist, I. D., McSorley, E. & Baddeley, R. J. The temporal impulse response underlying saccadic decisions. J. Neurosci. 25, 9907–9912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Luyckx, F., Spitzer, B., Blangero, A., Tsetsos, K. & Summerfield, C. Selective integration during sequential sampling in posterior neural signals. Cereb. Cortex 30, 4454–4464 (2020).

    Article  PubMed  Google Scholar 

  53. Tsetsos, K., Chater, N. & Usher, M. Salience driven value integration explains decision biases and preference reversal. Proc. Natl Acad. Sci. USA 109, 9659–9664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M. & Gardner, J. L. Adaptable history biases in human perceptual decisions. Proc. Natl Acad. Sci. USA 113, E3548–E3557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braun, A., Urai, A. E. & Donner, T. H. Adaptive history biases result from confidence-weighted accumulation of past choices. J. Neurosci. 38, 2418–2429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Urai, A. E., De Gee, J. W., Tsetsos, K. & Donner, T. H. Choice history biases subsequent evidence accumulation. eLife 8, e46331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rollwage, M., Dolan, R. J. & Fleming, S. M. Metacognitive failure as a feature of those holding radical beliefs. Curr. Biol. 28, 4014–4021.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jazayeri, M. & Movshon, J. A. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446, 912–915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luu, L. & Stocker, A. A. Post-decision biases reveal a self-consistency principle in perceptual inference. eLife 7, e33334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stocker, A. A. & Simoncelli, E. P. A Bayesian model of conditioned perception. Adv. Neural Inf. Process. Syst. 20, 1409–1416 (2007).

    Google Scholar 

  61. Cheadle, S. et al. Adaptive gain control during human perceptual choice. Neuron 81, 1429–1441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patai, Z. E. et al. Conflict detection in a sequential decision task is associated with increased cortico-subthalamic coherence and prolonged subthalamic oscillatory response in the beta band. Preprint at bioRxiv https://doi.org/10.1101/2020.06.09.141713 (2020).

  63. Kruglanski, A. W. & Webster, D. M. Motivated closing of the mind: ‘seizing’ and ‘freezing’. Psychol. Rev. 103, 263–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Schulz, L., Rollwage, M., Dolan, R. J. & Fleming, S. M. Dogmatism manifests in lowered information search under uncertainty. Proc. Natl Acad. Sci. USA 117, 31527–31534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cavedini, P., Gorini, A. & Bellodi, L. Understanding obsessive-compulsive disorder: focus on decision making. Neuropsychol. Rev. 16, 3–15 (2006).

    Article  PubMed  Google Scholar 

  66. Peirce, J. et al. PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Teodorescu, A. R., Moran, R. & Usher, M. Absolutely relative or relatively absolute: violations of value invariance in human decision making. Psychon. Bull. Rev. 23, 22–38 (2016).

    Article  PubMed  Google Scholar 

  68. Luce, R. D. Individual Choice Behavior: a Theoretical Analysis (Chapman & Hall, 1959).

  69. Tavares, G., Perona, P. & Rangel, A. The attentional drift diffusion model of simple perceptual decision-making. Front. Neurosci. 11, 468 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    Article  Google Scholar 

  71. White, C. N., Servant, M. & Logan, G. D. Testing the validity of conflict drift–diffusion models for use in estimating cognitive processes: a parameter-recovery study. Psychon. Bull. Rev. 25, 286–301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant to Marius Usher from the Israel Science Foundation (grant no. 1413/17). R.M. is a member of the Max Planck Centre for Computational Psychiatry and Ageing research at UCL, which is funded by the Max Planck Society, Munich, Germany (https://www.mpg.de/en, grant no. 647070403019). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank T. Sharot, B. Blain, I. Cogliati Dezza, L. Globig, C. Kelly, V. Vellani, S. Zheng, D. Lee and N. Nachman for critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and M.U. developed the study concept. M.G., R.M. and M.U. designed the experiments. M.G. and R.M. performed the experiments. M.G. analysed the data and carried out the computational modelling. M.G., R.M. and M.U. wrote the paper and contributed to data discussion and interpretation at all stages.

Corresponding authors

Correspondence to Moshe Glickman or Marius Usher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Birte Forstmann, Redmond O’Connell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary results, Figs. 1–11, Table 1 and methods.

Reporting summary

Peer review information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glickman, M., Moran, R. & Usher, M. Evidence integration and decision confidence are modulated by stimulus consistency. Nat Hum Behav 6, 988–999 (2022). https://doi.org/10.1038/s41562-022-01318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01318-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing