Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism

Abstract

Large-igneous-province volcanic activity during the mid-Cretaceous triggered a global-scale episode of reduced marine oxygen levels known as Oceanic Anoxic Event 2 approximately 94.5 million years ago. It has been hypothesized that this geologically rapid degassing of volcanic carbon dioxide altered seawater carbonate chemistry, affecting marine ecosystems, geochemical cycles and sedimentation. Here we report on two sites drilled by the International Ocean Discovery Program offshore of southwest Australia that exhibit clear evidence for suppressed pelagic carbonate sedimentation in the form of a stratigraphic interval barren of carbonate minerals, recording ocean acidification during the event. We then use the osmium isotopic composition of bulk sediments to directly link this protracted ~600 kyr shoaling of the marine calcite compensation depth to the onset of volcanic activity. This decrease in marine pH was prolonged by biogeochemical feedbacks in highly productive regions where elevated heterotrophic respiration added carbon dioxide to the water column. A compilation of mid-Cretaceous marine stratigraphic records reveals a contemporaneous decrease of sedimentary carbonate content at continental slope sites globally. Thus, we contend that changes in marine carbonate chemistry are a primary ecological stress and important consequence of rapid emission of carbon dioxide during many large-igneous-province eruptions in the geologic past.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbonate sedimentation trends through OAE2.
Fig. 2: Chemostratigraphy and core photos of the OAE2 interval at IODP Site U1516 (eastern Indian Ocean).
Fig. 3: Modeling of marine osmium geochemistry through OAE2.

Similar content being viewed by others

Data availability

All geochemical data measured for this study are available as a Zenodo data repository item (https://doi.org/10.5281/zenodo.7182186). Core-scanning X-ray fluorescence (XRF) data for Site U1516 are available through the International Ocean Discovery Program (IODP) at https://web.iodp.tamu.edu/LORE/.

Code availability

Matlab and R codes for inverse box modelling of isotopic records are available as a Zenodo data repository item (https://doi.org/10.5281/zenodo.7182186).

References

  1. Zachos, J. C. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  2. Erba, E., Bottini, C., Weissert, H. J. & Keller, C. E. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science 329, 428–432 (2010).

    Article  Google Scholar 

  3. Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).

    Article  Google Scholar 

  4. Honisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  5. Greene, S. E. et al. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic–Jurassic boundary. Earth Sci. Rev. 113, 72–93 (2012).

    Article  Google Scholar 

  6. Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9, 135–139 (2016).

    Article  Google Scholar 

  7. Kerr, A. C. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? J. Geol. Soc. 155, 619–626 (1998).

    Article  Google Scholar 

  8. Jenkyns, H. C. Geochemistry of oceanic anoxic events: review. Geochem. Geophys. Geosyst. 11, Q03004 (2010).

    Article  Google Scholar 

  9. Du Vivier, A. D. C. et al. Ca isotope stratigraphy across the Cenomanian–Turonian OAE 2: links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth Planet. Sci. Lett. 416, 121–131 (2015).

    Article  Google Scholar 

  10. Zeebe, R. E. & Tyrrell, T. History of carbonate ion concentration over the last 100 million years II: revised calculations and new data. Geochim. Cosmochim. Acta 257, 373–392 (2019).

    Article  Google Scholar 

  11. Bralower, T. J. et al. Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum. Earth Planet. Sci. Lett. 401, 70–82 (2014).

    Article  Google Scholar 

  12. Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1804250115 (2018).

  13. Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

  14. Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. En. Mijnb. 55, 179–184 (1976).

  15. Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous oceanic anoxic event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

    Article  Google Scholar 

  16. Sageman, B. B., Meyers, S. R. & Arthur, M. A. Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34, 125–128 (2006).

    Article  Google Scholar 

  17. Jones, M. M. et al. Regional chronostratigraphic synthesis of the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): new Re–Os chemostratigraphy and 40Ar/39Ar geochronology. GSA Bull. 133, 1090–1104 (2021).

    Article  Google Scholar 

  18. Kuroda, J. et al. Contemporaneous massive subaerial volcanism and Late Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 256, 211–223 (2007).

    Article  Google Scholar 

  19. Turgeon, S. C. & Creaser, R. A. Cretaceous Oceanic Anoxic Event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).

    Article  Google Scholar 

  20. Du Vivier, A. D. C. et al. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 389, 23–33 (2014).

    Article  Google Scholar 

  21. Papadomanolaki, N. M., van Helmond, N. A. G. M., Pälike, H., Sluijs, A. & Slomp, C. P. Quantifying volcanism and organic carbon burial across Oceanic Anoxic Event 2. Geology 50, 511–515 (2022).

    Article  Google Scholar 

  22. De Graciansky, P. C. et al. The Goban Spur transect: geologic evolution of a sediment-starved passive continental margin. GSA Bull. 96, 58–76 (1985).

    Article  Google Scholar 

  23. Arthur, M. A. & Dean, W. E. in The Western North Atlantic Region (eds Vogt, P. R. & Tucholke, B. E.) 617–630 (GSA, 1986).

  24. Herbin, J. P. et al. Organic-rich sedimentation at the Cenomanian–Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. Geol. Soc. Lond. Spec. Publ. 21, 389–422 (1986).

    Article  Google Scholar 

  25. Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. The Cenomanian–Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geol. Soc. Lond. Spec. Publ. 26, 401–420 (1987).

    Article  Google Scholar 

  26. Huber, B. T., et al., Site U1516. In Proceedings of the International Ocean Discovery Program Vol. 369 (eds Hobbs, R. W., Huber, B. T. & Bogus, K. A.), 1–36 (IODP, 2019).

  27. Petrizzo, M. R. et al. Exploring the paleoceanographic changes registered by planktonic foraminifera across the Cenomanian–Turonian boundary interval and Oceanic Anoxic Event 2 at southern high latitudes in the Mentelle Basin (SE Indian Ocean). Glob. Planet. Change 206, 103595 (2021).

    Article  Google Scholar 

  28. Lee, E. Y. et al. Early Cretaceous subsidence of the Naturaliste Plateau defined by a new record of volcaniclastic-rich sequence at IODP Site U1513. Gondwana Res. 82, 1–11 (2020).

    Article  Google Scholar 

  29. Nana Yobo, L., Brandon, A. D., Holmden, C., Lau, K. V. & Eldrett, J. Changing inputs of continental and submarine weathering sources of Sr to the oceans during OAE 2. Geochim. Cosmochim. Acta 303, 205–222 (2021).

    Article  Google Scholar 

  30. Li, Y.-X. et al. Enhanced ocean connectivity and volcanism instigated global onset of Cretaceous Oceanic Anoxic Event 2 (OAE2) 94.5 million years ago. Earth Planet. Sci. Lett. 578, 117331 (2022).

    Article  Google Scholar 

  31. Jiang, Q., Jourdan, F., Olierook, H. K. H., Merle, R. E. & Whittaker, J. M. Longest continuously erupting large igneous province driven by plume–ridge interaction. Geology 49, 206–210 (2021).

    Article  Google Scholar 

  32. de Graciansky, P. C. et al. Ocean-wide stagnation episode in the Late Cretaceous. Nature 308, 346–349 (1984).

    Article  Google Scholar 

  33. Elrick, M., Molina-Garza, R., Duncan, R. & Snow, L. C-isotope stratigraphy and paleoenvironmental changes across OAE2 (mid-Cretaceous) from shallow-water platform carbonates of southern Mexico. Earth Planet. Sci. Lett. 277, 295–306 (2009).

    Article  Google Scholar 

  34. Parente, M. et al. Stepwise extinction of larger foraminifers at the Cenomanian–Turonian boundary: a shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36, 715 (2008).

    Article  Google Scholar 

  35. Sageman, B. B., Rich, J., Arthur, M. A., Birchfield, G. E. & Dean, W. E. Evidence for Milankovitch periodicities in Cenomanian–Turonian lithologic and geochemical cycles, western interior USA. J. Sediment. Res. 67, 286–302 (1997).

    Google Scholar 

  36. Sluijs, A., Zeebe, R. E., Bijl, P. K. & Bohaty, S. M. A middle Eocene carbon cycle conundrum. Nat. Geosci. 6, 429–434 (2013).

    Article  Google Scholar 

  37. Chen, H. et al. Enhanced hydrological cycle during Oceanic Anoxic Event 2 at southern high latitudes: new insights from IODP Site U1516. Glob. Planet. Change 209, 103735 (2022).

    Article  Google Scholar 

  38. Vogt, P. R. Volcanogenic upwelling of anoxic, nutrient-rich water: a possible factor in carbonate-bank/reef demise and benthic faunal extinctions? GSA Bull. 101, 1225–1245 (1989).

    Article  Google Scholar 

  39. Scopelliti, G., Bellanca, A., Neri, R., Baudin, F. & Coccioni, R. Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria–Marche Apennines) and from an equivalent section in NW Sicily: consistent and contrasting responses to the OAE2. Chem. Geol. 228, 266–285 (2006).

    Article  Google Scholar 

  40. Wang, J., Jacobson, A. D., Sageman, B. B. & Hurtgen, M. T. Stable Ca and Sr isotopes support volcanically triggered biocalcification crisis during Oceanic Anoxic Event 1a. Geology https://doi.org/10.1130/G47945.1 (2021).

  41. Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).

    Article  Google Scholar 

  42. Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Article  Google Scholar 

  43. Gerlach, T. Volcanic versus anthropogenic carbon dioxide. Eos 92, 201–202 (2011).

    Article  Google Scholar 

  44. Bauer, K. W., Zeebe, R. E. & Wortmann, U. G. Quantifying the volcanic emissions which triggered Oceanic Anoxic Event 1a and their effect on ocean acidification. Sedimentology 64, 204–214 (2017).

    Article  Google Scholar 

  45. Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    Article  Google Scholar 

  46. Elder, W. P. Molluscan extinction patterns across the Cenomanian–Turonian stage boundary in the Western Interior of the United States. Paleobiology 15, 299–320 (1989).

    Article  Google Scholar 

  47. Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 2001PA000623 (2002).

  48. Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  Google Scholar 

  49. Coccioni, R. & Luciani, V. Planktonic foraminifera and environmental changes across the Bonarelli Event (OAE2, latest Cenomanian) in its type area: a high-resolution study from the tethyan reference Bottaccione section (Gubbio, Central Italy). J. Foraminifer. Res. 34, 109–129 (2004).

    Article  Google Scholar 

  50. Faucher, G., Erba, E., Bottini, C. & Gambacorta, G. Calcareous nannoplankton response to the latest Cenomanian Oceanic Anoxic Event 2 perturbation. Riv. Ital. Paleontol. Stratigr. 123, 159–176 (2017).

  51. Kitch, G.D., et al. Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2. Commun. Earth Environ. 3, 315 (2022).

  52. Coccioni, R., Sideri, M., Frontalini, F. & Montanari, A. in The Stratigraphic Record of Gubbio (eds Menichetti, M. et al.) 79–96 (GSA, 2016).

  53. Philip, J. M. & Airaud-Crumiere, C. The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control. Coral Reefs 10, 115–125 (1991).

    Article  Google Scholar 

  54. Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces (eds Ernst, R. E. et al.) 27–82 (AGU, 2021); https://doi.org/10.1002/9781119507444.ch2

  55. Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary. Science 363, 866–870 (2019).

    Article  Google Scholar 

  56. Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).

    Article  Google Scholar 

  57. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379–379 (1996).

    Article  Google Scholar 

  58. Tejada, M. L. G. et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 37, 855–858 (2009).

    Article  Google Scholar 

  59. Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    Article  Google Scholar 

  60. Du Vivier, A. D. C., Selby, D., Condon, D. J., Takashima, R. & Nishi, H. Pacific 187Os/188Os isotope chemistry and U–Pb geochronology: synchroneity of global Os isotope change across OAE2. Earth Planet. Sci. Lett. 428, 204–216 (2015).

    Article  Google Scholar 

  61. Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A. & Froude, G. Influence of the High Arctic Igneous Province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, High Canadian Arctic. Earth Planet. Sci. Lett. 511, 76–88 (2019).

    Article  Google Scholar 

  62. Sullivan, D. L. et al. High resolution osmium data record three distinct pulses of magmatic activity during Cretaceous Oceanic Anoxic Event 2 (OAE-2). Geochim. Cosmochim. Acta 285, 257–273 (2020).

    Article  Google Scholar 

  63. Meyers, S. R. Astrochron: An R Package for Astrochronology (2014); http://cran.r-project.org/package=astrochron

  64. Levasseur, S., Birck, J. L. & Allegre, C. J. The osmium riverine flux and the oceanic mass balance of osmium. Earth Planet. Sci. Lett. 174, 7–23 (1999).

    Article  Google Scholar 

  65. Selby, D. & Creaser, R. A. Re–Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chem. Geol. 200, 225–240 (2003).

    Article  Google Scholar 

  66. Smoliar, M. I., Walker, R. J. & Morgan, J. W. Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099–1102 (1996).

    Article  Google Scholar 

  67. Bogus, K. A. et al. in Australia Cretaceous Climate and Tectonics Vol. 369 (eds Hobbs, R. W., Huber, B. T., & Bogus, K. A.) (IODP, 2019).

  68. Carignan, J., Hild, P., Mevelle, G., Morel, J. & Yeghicheyan, D. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand. Geoanal. Res. 25, 187–198 (2001).

    Article  Google Scholar 

  69. Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 344–361 (2006).

    Article  Google Scholar 

  70. McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2, 2000GC000109 (2001).

  71. Tucholke, B. E. et al. in Initial Reports of the Deep Sea Drilling Project Vol. 43 (eds Tucholke, B. E., Vogt, P. R., et al.) 323–391 (U.S. Government Printing Office, 1979).

  72. Arthur, M. A. in Initial Reports of the Deep Sea Drilling Project Vol. 47 (eds Sibuet, J.-C. & Ryan, W. B. F.) 719–751 (US Government Printing Office, 1979).

  73. Meyers, P. A. Appendix II. Organic carbon and calcium carbonate analyses, Deep Sea Drilling Project Leg 93, North American continental rise. in Initial Reports of the Deep Sea Drilling Project Vol. 93 (eds van Hinte, J. E. & Wise, S. W.) 465–469 (US Government Printing Office, 1987).

  74. Dean, W. E. & Arthur, M. A. in Initial Reports of the Deep Sea Drilling Project Vol. 93 (eds van Hinte, J. E., Wise, S. W., et al.) 1093–1137 (U.S. Government Printing Office, 1987).

  75. Herbin, J. P., Masure, E. & Roucache, J. in Initial Reports of the Deep Sea Drilling Project Vol. 93 (eds van Hinte, J. E., Wise, S. W., et al.) 1139–1162 (U.S. Government Printing Office, 1987).

  76. Cameron, D. H. in Initial Reports of the Deep Sea Drilling Project Vol. 43 (eds Tucholke, B. E., Vogt, P. R., et al.) 1043–1047 (U.S. Government Printing Office, 1979).

  77. van Helmond, N. A. G. M., Ruvalcaba Baroni, I., Sluijs, A., Sinninghe Damsté, J. S. & Slomp, C. P. Spatial extent and degree of oxygen depletion in the deep proto-North Atlantic basin during Oceanic Anoxic Event 2. Geochem. Geophys. Geosyst. 15, 4254–4266 (2014).

    Article  Google Scholar 

  78. Forster, A. et al. The Cenomanian/Turonian oceanic anoxic event in the South Atlantic: new insights from a geochemical study of DSDP Site 530A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 256–283 (2008).

    Article  Google Scholar 

  79. Huber, B. T. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal Equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 28, 1164–1191 (1995).

  80. Uchman, A., Bąk, K. & Rodríguez-Tovar, F. J. Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): an example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeogr. Palaeoclimatol. Palaeoecol. 262, 61–71 (2008).

    Article  Google Scholar 

  81. Huber, B. T., et al., Site U1513. In Proceedings of the International Ocean Discovery Program Vol. 369 (eds Hobbs, R. W., Huber, B. T. & Bogus, K. A.) 1–60 (IODP, 2019).

  82. Thurow, J., Brumsack, H. J., Rullkotter, J., Littke, R. & Meyers, P. A. in Synthesis of Results from Scientific Drilling in the Indian Ocean Vol. 70 (eds Duncan, R. A. et al.) 253–274 (AGU, 1992).

  83. Rullkötter, J. et al. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 122 (eds Von Rad, U. & Haq, B. U.) 317–333 (Ocean Drilling Program, 1992).

  84. Thurow, J. et al. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 103 (eds Boillot, G. & Winterer, E. L.) 587–634 (Ocean Drilling Program, 1988).

  85. Shipboard Scientific Party in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 207 (eds Erbacher, J. et al.) Ch. 1 (ODP, 2004); https://doi.org/10.2973/odp.proc.ir.207.101.2004

  86. Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).

    Article  Google Scholar 

  87. Arnaboldi, M. & Meyers, P. A. Data report: multiproxy geochemical characterization of OAE-related black shales at Site 1276, Newfoundland Basin. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 210 (eds Tucholke, B. E. et al.) Ch. 10 (ODP, 2006).

  88. Hetzel, A., Boettcher, M. E., Wortmann, U. G. & Brumsack, H.-J. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 302–328 (2009).

    Article  Google Scholar 

  89. Waples, D. W. & Cunningham, R. Leg 80 Shipboard Organic Geochemistry. in Initial Reports of the Deep Sea Drilling Program Vol. 80 (eds de Graciansky, P. C. & Poag, C. W.) 949–968 (US Government Printing Office, 1985).

  90. Wagreich, M., Bojar, A.-V., Sachsenhofer, R. F., Neuhuber, S. & Egger, H. Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria). Cretac. Res. 29, 965–975 (2008).

    Article  Google Scholar 

  91. Turgeon, S. & Brumsack, H.-J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy. Chem. Geol. 234, 321–339 (2006).

    Article  Google Scholar 

  92. Linnert, C., Mutterlose, J. & Herrle, J. O. Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): implications for the palaeoceanography of the proto North Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 507–528 (2011).

    Article  Google Scholar 

  93. Exon, N. F., Borella, P. E. & Ito, M. in Proceedings of the Ocean Drilling Program Vol. 122 (eds von Rad, U. & Haq, B. U.) 233–257 (US Government Printing Office, 1992).

  94. Meyers, P. A., Yum, J.-G. & Wise, S. W. Origins and maturity of organic matter in mid-Cretaceous black shales from ODP Site 1138 on the Kerguelen Plateau. Mar. Pet. Geol. 26, 909–915 (2009).

    Article  Google Scholar 

  95. Dickson, A. J. et al. A Southern Hemisphere record of global trace‐metal drawdown and orbital modulation of organic‐matter burial across the Cenomanian–Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau). Sedimentology 64, 186–203 (2017).

    Article  Google Scholar 

  96. Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J. & CoBabe, E. Foraminiferal assemblage and stable isotopic change across the Cenomanian–Turonian boundary in the subtropical North Atlantic. J. Foraminifer. Res. 29, 392–417 (1999).

    Google Scholar 

  97. Bowman, A. R. & Bralower, T. J. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Mar. Geol. 217, 305–321 (2005).

    Article  Google Scholar 

  98. Joo, Y. J. & Sageman, B. B. Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin, USA. J. Sediment. Res. 84, 529–542 (2014).

    Article  Google Scholar 

  99. Bomou, B. et al. The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 466–481 (2013).

    Article  Google Scholar 

  100. Sageman, B. B., Lyons, T. W. & Joo, Y. Ji. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 141–179 (Elsevier, 2014); https://doi.org/10.1016/B978-0-08-095975-7.00706-3

  101. Wendler, J. E., Lehmann, J. & Kuss, J. Orbital time scale, intra-platform basin correlation, carbon isotope stratigraphy and sea-level history of the Cenomanian–Turonian Eastern Levant platform, Jordan. Geol. Soc. Lond. Spec. Publ. 341, 171–186 (2010).

    Article  Google Scholar 

  102. Paez-Reyes, M. et al. Assessing the contribution of the La Luna Sea to the global sink of organic carbon during the Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE2). Glob. Planet. Change 199, 103424 (2021).

    Article  Google Scholar 

  103. Nederbragt, A. J. & Fiorentino, A. Stratigraphy and palaeoceanography of the Cenomanian–Turonian Boundary Event in Oued Mellegue, north-western Tunisia. Cretac. Res. 20, 47–62 (1999).

    Article  Google Scholar 

  104. Voigt, S., Gale, A. S. & Voigt, T. Sea-level change, carbon cycling and palaeoclimate during the late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretac. Res. 27, 836–858 (2006).

    Article  Google Scholar 

  105. Beil, S. et al. New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco. Cretac. Res. 84, 451–473 (2018).

    Article  Google Scholar 

  106. Takashima, R. et al. Litho-, bio- and chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 61–74 (2009).

    Article  Google Scholar 

  107. Peryt, D. & Wyrwicka, K. The Cenomanian/Turonian boundary event in Central Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 104, 185–197 (1993).

    Article  Google Scholar 

  108. Hobbs, R.W., Huber, B.T., Bogus, K.A. & the Expedition 369 Scientists. In Australia Cretaceous Climate and Tectonics Vol. 369 (International Ocean Discovery Program, 2019); https://doi.org/10.14379/iodp.proc.369.101.2019

  109. Bralower, T. J. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian–Turonian boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275–316 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the dedication of the IODP Expedition 369 Science Party, technicians and crew in coring Site U1516; analytical support of A. Hofmann, C. Ottley and G. Nowell at Durham University; and assistance of B. Levay with XRF core scanning. This research was funded by a US Science Support Program (USSSP) Post-Expedition Award to M.M.J., and box modelling and carbonate compilations represent doctoral research of M.M.J., funded partly by National Science Foundation grant 1338312 to B.B.S. M.M.J. acknowledges support from the Smithsonian Peter Buck Fellowship; D.S. acknowledges the TOTAL endowment fund; L.R. acknowledges support from IODP-France.

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization was by M.M.J., B.B.S. and A.D.J. Geochemical analyses were done by M.M.J., D.S., S.J.B., L.R., K.G.M. and K.A.B. Fieldwork and core collection were handled by B.T.H., R.W.H., K.A.B., M.L.G.T., J.K., S.J.B., L.R., K.G.M. and M.M.J. The original manuscript draft was by M.M.J., B.B.S., D.S., A.D.J., K.G.M., S.J.B. and L.R. Modelling analyses were by M.M.J., S.J.B., M.L.G.T. and J.K. All authors contributed to manuscript editing.

Corresponding author

Correspondence to Matthew M. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of International Ocean Discovery Program (IODP) Site U1516 (yellow circle).

Additional sites cored during IODP Expedition 369 in the Mentelle Basin offshore southwest Australia are displayed (modified from108). Bathymetric contour interval of 500 meters. DSDP = Deep Sea Drilling Program.

Extended Data Fig. 2 Stratigraphic correlation of the Cenomanian-Turonian boundary interval at IODP Site U1516 to the Portland Core near the base Turonian Global Stratotype Section and Point (GSSP) in Colorado, USA.

Oceanic Anoxic Event 2 (OAE2) is defined by a positive carbon isotope (δ13C) excursion (grey shading). The correlation is based on: 1) the base and termination of the δ13C excursion27, 2) the anomalously high 192Os abundance interval (light purple dashed line) linked to large igneous province (LIP) volcanic activity19, 3) the base of the initial osmium isotope (187/188Osi) excursion associated with LIP volcanism at the base of OAE219, and 4) bandpassed ~100 kyr-short eccentricity cycles. Calcareous nannofossil biostratigraphy independently supports the correlation as the CC10a/CC10b subzone boundary, approximated by the last occurrence (LO) of Axopodorhabdus albianus, falls in the carbonate barren interval at Site U151627 and lower OAE2 interval in Portland Core109. Site U1516 data sources: δ13C data27, Os data and and cyclostratigraphy (this study). Portland Core data sources: Os data20, δ13C data16 (figure adapted from17). kcps = kilocounts per second; VPDB = Vienna Peedee Belemnite scale; ppt = parts per trillion; CCD = calcite compensation depth.

Extended Data Fig. 3 REDFIT power spectra of Fe XRF scanning data from IODP Site U1516.

Plots span intervals of A: 455.2–467.4 m rCCSF; B: 467.4–470.7 m rCCSF and C: 470.7–481.8 m rCCSF, using a Welch window with 80%, 90%, 95% and 99% confidence levels, and main periodicities indicated.

Extended Data Fig. 4 Floating astrochronology for the Cenomanian-Turonian boundary interval at IODP Site U1516.

This is based on a short eccentricity bandpass ~100-kyr filter of the cyclic Fe XRF scanning data from Hole U1516D. Squares in right pane show sedimentation rate estimates from the bandpass filter and dashed line shows an average sedimentation rate of 0.8 cm/kyr for the general interval from shipboard nannofossil biostratigraphy26. The unradiogenic Osi excursion marks the onset of LIP volcanism several tens of kiloyear before the initiation of the OAE2 carbon isotope excursion in most conformable sites17,19,20,60,61. The base of the Osi excursion has been dated to 94.55 ± 0.1 Ma17 and ~94.9 Ma62, providing scenarios for absolute numerical age tie points for the Site U1516 record.

Extended Data Fig. 5 Additional plot of box modeling results for marine 187/188Os.

This includes the scenario of large igneous province (LIP) volcanism (top panel, A) and a second scenario (bottom panel, B) where fluxes of radiogenic osmium from continental weathering (Friv) are set to increase by 80% for 500 kiloyears through Oceanic Anoxic Event 2 (OAE2)29. An increase in Friv necessitates an even larger increase in the flux of unradiogenic osmium from large igneous province sources (FLIP) by as much as 50x larger than background mantle/volcanic fluxes. Model outputs are plotted against initial osmium isotope ratio data (Osi) through OAE2 from IODP Site U1516 in the Indian Ocean (circle symbols and dotted line, this study) and the Angus Core in the Western Interior Basin of North America17.

Extended Data Table 1 Model parameters for Late Cretaceous marine Os fluxes and model initial conditions
Extended Data Table 2 Modeled large igneous province Os flux (FLIP) values through time used to perturb the marine Os reservoir during OAE2
Extended Data Table 3 A global compilation of carbonate contents (wt.% CaCO3) pre-OAE2 and during OAE2 from 35 sites

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Supplementary Table 1

Multi-tab Excel spreadsheet of geochemical data measured for study and bandpass filtering output

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M.M., Sageman, B.B., Selby, D. et al. Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism. Nat. Geosci. 16, 169–174 (2023). https://doi.org/10.1038/s41561-022-01115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01115-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing