Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production

Abstract

For practical photoelectrochemical water splitting to become a reality, highly efficient, stable and scalable photoelectrodes are essential. However, meeting these requirements simultaneously is a difficult task, as improvements in one area can often lead to deteriotation in others. Here, addressing this challenge, we report a formamidinium lead triiodide (FAPbI3) perovskite-based photoanode that is encapsulated by an Ni foil/NiFeOOH electrocatalyst, which demonstrates promising efficiency, stability and scalability. This metal-encapsulated FAPbI3 photoanode records a photocurrent density of 22.8 mA cm−2 at 1.23 VRHE (where VRHE is voltage with respect to the reversible hydrogen electrode) and shows excellent stability for 3 days under simulated 1-sun illumination. We also construct an all-perovskite-based unassisted photoelectrochemical water splitting system by connecting the photoanode with a same-size FAPbI3 solar cell in parallel, which records a solar-to-hydrogen efficiency of 9.8%. Finally, we demonstrate the scale-up of these Ni-encapsulated FAPbI3 photoanodes into mini-modules up to 123 cm2 in size, recording a solar-to-hydrogen efficiency of 8.5%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NiFeOOH/Ni/FAPbI3 photoanode and all-PSK-based en-PEC mini-module.
Fig. 2: Structure and performance of the n–i–p-structured FAPbI3 PV cell.
Fig. 3: Device structure and PEC performance of the n–i–p-configured NiFeOOH/Ni/FAPbI3 photoanode.
Fig. 4: Charge transport, separation and transfer kinetics of OEC/Ni/FAPbI3 photoanodes using different OECs (NiFeOOH, NiOOH and FeOOH) and their effects on the activity and stability of the photoanodes.
Fig. 5: Scale-up demonstration of the NiFeOOH/Ni/FAPbI3 photoanode mini-module for an unassisted PEC water splitting system.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article. The experimental data for all the supplementary figures are provided as Supplementary Data. Source data are provided with this paper.

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kim, J. H., Hansora, D., Sharma, P., Jang, J. W. & Lee, J. S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. He, Y. & Wang, D. Toward practical solar hydrogen production. Chem 4, 405–408 (2018).

    Article  CAS  Google Scholar 

  4. Ye, K. H. et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 10, 3687 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Kim, J. H. et al. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).

    Article  Google Scholar 

  7. Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting – materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, S. et al. Hybrid organic–inorganic materials and composites for photoelectrochemical water splitting. ACS Energy Lett. 5, 1487–1497 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Chen, J., Dong, C., Idriss, H., Mohammed, O. F. & Bakr, O. M. Metal halide perovskites for solar‐to‐chemical fuel conversion. Adv. Energy Mater. 10, 1902433 (2019).

    Article  Google Scholar 

  10. Chen, P. F., Ong, W. J., Shi, Z., Zhao, X. & Li, N. Pb‐based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond. Adv. Func. Mater. 30, 1909667 (2020).

    Article  CAS  Google Scholar 

  11. Wang, W., Tade, M. O. & Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, W., Xu, M., Xu, X., Zhou, W. & Shao, Z. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 59, 136–152 (2020).

    Article  CAS  Google Scholar 

  13. Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    Article  CAS  Google Scholar 

  14. Da, P. et al. High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett. 15, 3452–3457 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Nam, S., Mai, C. T. K. & Oh, I. Ultrastable photoelectrodes for solar water splitting based on organic metal halide perovskite fabricated by lift-off process. ACS Appl. Mater. Interfaces 10, 14659–14664 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, C., Yang, S., Chen, X., Wen, T. & Yang, H. G. Surface-functionalized perovskite films for stable photoelectrochemical water splitting. J. Mater. Chem. A 5, 910–913 (2017).

    Article  CAS  Google Scholar 

  17. Hoang, M. T., Pham, N. D., Han, J. H., Gardner, J. M. & Oh, I. Integrated photoelectrolysis of water implemented on organic metal halide perovskite photoelectrode. ACS Appl. Mater. Interfaces 8, 11904–11909 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Li, W. et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016).

    Article  CAS  Google Scholar 

  19. Chen, H. et al. Integrating low‐cost earth‐abundant co‐catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splitting. Adv. Func. Mater. 31, 2008245 (2020).

    Article  Google Scholar 

  20. Poli, I. et al. Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nat. Commun. 10, 2097 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Qiu, Y. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2, e1501764 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Lee, D. K. & Choi, K. S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2017).

    Article  ADS  CAS  Google Scholar 

  23. Kim, T. W. & Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Xiao, S. et al. Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. J. Mater. Chem. A 5, 19091–19097 (2017).

    Article  CAS  Google Scholar 

  25. Wang, S. et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30, e1800486 (2018).

    Article  PubMed  Google Scholar 

  26. Tang, S. et al. Harvesting of infrared part of sunlight to enhance polaron transport and solar water splitting. Adv. Func. Mater. 32, 2110284 (2022).

    Article  CAS  Google Scholar 

  27. Tolod, K., Hernández, S. & Russo, N. Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7, 13 (2017).

    Article  Google Scholar 

  28. Ahmet, I. Y. et al. Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical–photovoltaic water splitting device. Sustain. Energy Fuels 3, 2366–2379 (2019).

    Article  CAS  Google Scholar 

  29. Landman, A. et al. Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule 4, 448–471 (2020).

    Article  CAS  Google Scholar 

  30. Photoelectrochemical Demonstrator Device for Solar Hydrogen Generation, PECDEMO Project Final Report 621252 (Helmholtz-Zentrum Berlin (HZB) for Materials and Energy, GmbH, 2016).

  31. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Jeong, J. et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Ahlawat, P. et al. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure alpha-FAPbI3. Sci. Adv. 7, eabe3326 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie, L. Q. et al. Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. J. Am. Chem. Soc. 139, 3320–3323 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Chueh, C. C., Li, C. Z. & Jen, A. K. Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8, 1160–1189 (2015).

    Article  CAS  Google Scholar 

  38. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Park, B. W. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Kim, Y. K., Kim, J. H., Jo, Y. H. & Lee, J. S. Precipitating metal nitrate deposition of amorphous metal oxyhydroxide electrodes containing Ni, Fe, and Co for electrocatalytic water oxidation. ACS Catal. 9, 9650–9662 (2019).

    Article  CAS  Google Scholar 

  42. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  43. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with earth-abundant metals. Science 369, eabc3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, J. M. et al. High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nat. Commun. 11, 5509 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Francas, L. et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Cui, J. et al. 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen‐evolution photoanodes. Adv. Func. Mater. 32, 2207136 (2022).

    Article  CAS  Google Scholar 

  47. Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Jacobsson, T. J., Fjällström, V., Sahlberg, M., Edoff, M. & Edvinsson, T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013).

    Article  CAS  Google Scholar 

  49. Kim, M. et al. Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, e1903316 (2019).

    Article  PubMed  Google Scholar 

  50. Karuturi, S. K. et al. Perovskite photovoltaic integrated CdS/TiO2 photoanode for unbiased photoelectrochemical hydrogen generation. ACS Appl. Mater. Interfaces 10, 23766–23773 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Pihosh, Y. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  52. Higashi, T. et al. Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells. Angew. Chem. Int. Ed. 58, 2300–2304 (2019).

    Article  CAS  Google Scholar 

  53. Fan, R. et al. Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni. J. Mater. Chem. A 7, 2200–2209 (2019).

    Article  CAS  Google Scholar 

  54. Lee, S. A. et al. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 1, 100219 (2020).

    Article  CAS  Google Scholar 

  55. Song, Z. N. et al. All-perovskite tandem photoelectrodes for unassisted solar hydrogen production. ACS Energy Lett. 8, 2611–2619 (2023).

    Article  CAS  Google Scholar 

  56. Hansora, D., Cherian, D., Mehrotra, R., Jang, J. W. & Lee, J. S. Fully inkjet-printed large-scale photoelectrodes. Joule 7, 884–919 (2023).

    Article  CAS  Google Scholar 

  57. Yoo, J. W. et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436 (2021).

    Article  CAS  Google Scholar 

  58. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Choi, I. Y. et al. Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives. Nano Energy 65, 104044 (2019).

    Article  CAS  Google Scholar 

  60. Fehr, A. M. K. et al. Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%. Nat. Commun. 14, 3797 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Climate Change Response Project (NRF-2019M1A2A2065612), the Brainlink Project (NRF-2022H1D3A3A01081140 and NRF-2021R1A4A3027878) (awarded to J.S.L.) and the Basic Science Research Program (NRF-2018R1A3B1052820) (awarded to S.I.S.) funded by the Ministry of Science and ICT of Korea via the National Research Foundation, and by research funds from Hanhwa Solutions Chemicals (1.220029.01), UNIST (1.190013.01) (awarded to J.S.L. and J.-W.J.) and the Carbon Neutrality Demonstration and Research Centre at UNIST (1.230053.01) (awarded to H.L.). This work was also supported by the Institute for Basic Science (IBS-R019-D1) and the Alchemist Project 1415184376 (20019321) (awarded to J.-W.J.). The authors are grateful to the instrumentation facility at the UNIST Central Research Facility.

Author information

Authors and Affiliations

Authors

Contributions

D.H., J.W.Y., J.-W.J., S.I.S. and J.S.L. designed and directed the research. D.H. conceived the concept of stabilizing FAPbI3 PSK photoanodes using metal encapsulation. J.W.Y. and E.N. prepared the FAPbI3 PV cells and mini-modules and measured their performance. D.H. and R.M. stabilized and protected small and scaled-up FAPbI3 PEC cells and measured their performance with characterization. W.J.B. conducted GC analysis, while Y.K.K. synthesized and characterized the NiFeOOH electrocatalyst for the OER experiments. D.H., R.M. and W.J.B. designed and fabricated the PEC reactor using acrylic components at Makelab at UNIST. D.L. and H.L. performed the techno-economic analysis. D.H., J.W.Y., R.M., J.-W.J., S.I.S. and J.S.L. co-wrote the paper. All authors read and commented on the paper.

Corresponding authors

Correspondence to Hankwon Lim, Ji-Wook Jang, Sang Il Seok or Jae Sung Lee.

Ethics declarations

Competing interests

D.H., R.M., W.J.B., J.-W.J. and J.S.L. prepared a Korean patent application (10-2023-0196699 dated 2023-12-29) concurrently with this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Jing Gu, Gerko Oskam, Ludmilla Steier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Tables 1–8, Notes 1–10 and references.

Supplementary Data 1

Techno-economic analyses (TEA) calculations.

Supplementary Data 2

Source data for supplementary figures.

Supplementary Video 1

Multi-cell PEC system (7.68 and 30.8 cm2).

Supplementary Video 2

Multi-reactor PEC system (123 cm2).

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3 and statistical source data for Fig. 3e.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5 and statistical source data for Fig. 5c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansora, D., Yoo, J.W., Mehrotra, R. et al. All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production. Nat Energy 9, 272–284 (2024). https://doi.org/10.1038/s41560-023-01438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01438-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing