Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications

Abstract

Metal–organic frameworks (MOFs) are a class of nanoporous material precisely synthesized from molecular building blocks. MOFs could have a critical role in many energy technologies, including carbon capture, separations and storage of energy carriers. Molecular simulations can improve our molecular-level understanding of adsorption in MOFs, and it is now possible to use realistic models for these complicated materials and predict their adsorption properties in quantitative agreement with experiments. Here we review the predictive design and discovery of MOF adsorbents for the separation and storage of energy-relevant molecules, with a view to understanding whether we can reliably discover novel MOFs computationally prior to laboratory synthesis and characterization. We highlight in silico approaches that have discovered new adsorbents that were subsequently confirmed by experiments, and we discuss the roles of high-throughput computational screening and machine learning. We conclude that these tools are already accelerating the discovery of new applications for existing MOFs, and there are now several examples of new MOFs discovered by computational modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of some MOFs discovered by computational modelling before synthesis and laboratory testing.
Fig. 2: Examples of MOFs inspired by computational modelling.
Fig. 3: Databases of hypothetical MOFs for high-throughput gas-adsorption simulations.
Fig. 4: Computational discovery of MOFs for gas storage and separation via high-throughput screening.
Fig. 5: A machine learning workflow for adsorption properties in MOFs.

Similar content being viewed by others

References

  1. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Li, H. et al. Porous metal–organic frameworks for gas storage and separation: status and challenges. EnergyChem 1, 100006 (2019).

    Article  Google Scholar 

  4. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2011).

    Article  PubMed  Google Scholar 

  5. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Farrusseng, D., Aguado, S. & Pinel, C. Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).

    Article  CAS  Google Scholar 

  7. Gascon, J., Corma, A., Kapteijn, F. & Llabrés I Xamena, F. X. Metal organic framework catalysis: quo vadis? ACS Catal. 4, 361–378 (2013).

    Article  Google Scholar 

  8. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2011).

    Article  PubMed  Google Scholar 

  9. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    Article  ADS  CAS  Google Scholar 

  10. Linnane, E., Haddad, S., Melle, F., Mei, Z. & Fairen-Jimenez, D. The uptake of metal-organic frameworks: a journey into the cell. Chem. Soc. Rev. 51, 6065–6086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present and future. Chem. Mater. 29, 2618–2625 (2017). This database of already-existing MOFs contains >100,000 MOFs and is maintained and updated by the Cambridge Crystallographic Data Centre (CCDC) every quarter.

    Article  CAS  Google Scholar 

  13. Zhang, Z. et al. Metal–organic frameworks for water harvesting: machine learning-based prediction and rapid screening. ACS Sustain. Chem. Eng. 11, 8148–8160 (2023).

    Article  ADS  CAS  Google Scholar 

  14. Demir, H., Daglar, H., Gulbalkan, H. C., Aksu, G. O. & Keskin, S. Recent advances in computational modeling of MOFs: from molecular simulations to machine learning. Coord. Chem. Rev. 484, 215112 (2023).

    Article  CAS  Google Scholar 

  15. Bai, X. et al. Machine-learning-assisted high-throughput computational screening of metal–organic framework membranes for hydrogen separation. Chem. Eng. J. 446, 136783 (2022).

    Article  CAS  Google Scholar 

  16. Moosavi, S. M. et al. A data-science approach to predict the heat capacity of nanoporous materials. Nat. Mater. 21, 1419–1425 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Getman, R. B., Bae, Y.-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen and acetylene storage in metal-organic frameworks. Chem. Rev. 112, 703–723 (2011).

    Article  PubMed  Google Scholar 

  18. Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification and activation of metal-organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Düren, T., Sarkisov, L., Yaghi, O. M. & Snurr, R. Q. Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004). This work is an early example of computational modelling inspiring a MOF for methane storage.

    Article  PubMed  Google Scholar 

  20. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids, 2nd edition (Oxford Univ. Press, 2017).

  22. Martin, M. G. & Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102, 2569–2577 (1998).

    Article  CAS  Google Scholar 

  23. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  24. Ma, S. et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130, 1012–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Peng, Y. et al. Methane storage in metal-organic frameworks: current records, surprise findings and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012). This work generated 137,953 hypothetical MOFs and used high-throughput computational screening to reveal structure–property relationships for natural gas storage.

    Article  CAS  Google Scholar 

  28. Wilmer, C. E., Farha, O. K., Bae, Y.-S., Hupp, J. T. & Snurr, R. Q. Structure-property relationships of porous materials for carbon dioxide separation and capture. Energy Environ. Sci. 5, 9849–9856 (2012).

    Article  CAS  Google Scholar 

  29. Sikora, B. J., Wilmer, C. E., Greenfield, M. L. & Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137,000 hypothetical metal-organic frameworks. Chem. Sci. 3, 2217–2223 (2012).

    Article  CAS  Google Scholar 

  30. Li, W., Xia, X., Cao, M. & Li, S. Structure–property relationship of metal–organic frameworks for alcohol-based adsorption-driven heat pumps via high-throughput computational screening. J. Mater. Chem. A 7, 7470–7479 (2019).

    Article  CAS  Google Scholar 

  31. Thornton, A. W. et al. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem. Mater. 29, 2844–2854 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed, A. et al. Exceptional hydrogen storage achieved by screening nearly half a million metal–organic frameworks. Nat. Commun. 10, 1568 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Bureekaew, S. & Schmid, R. Hypothetical 3D-periodic covalent organic frameworks: exploring the possibilities by a first principles derived force field. CrystEngComm 15, 1551–1562 (2013).

    Article  CAS  Google Scholar 

  34. Lee, S. et al. Computational screening of trillions of metal-organic frameworks for high-performance methane storage. ACS Appl. Mater. Interfaces 13, 23647–23654 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, R. L. et al. In silico design of three-dimensional porous covalent organic frameworks via known synthesis routes and commercially available species. J. Phys. Chem. C 118, 23790–23802 (2014).

    Article  ADS  CAS  Google Scholar 

  36. Martin, R. L., Lin, L.-C., Jariwala, K., Smit, B. & Haranczyk, M. Mail-order metal–organic frameworks (MOFs): designing isoreticular MOF-5 analogues comprising commercially available organic molecules. J. Phys. Chem. C 117, 12159–12167 (2013).

    Article  CAS  Google Scholar 

  37. Anderson, R. & Gómez-Gualdrón, D. A. Large-scale free energy calculations on a computational metal-organic frameworks database: toward synthetic likelihood predictions. Chem. Mater. 32, 8106–8119 (2020).

    Article  CAS  Google Scholar 

  38. Kalhor, P. et al. Functional material systems enabled by automated data extraction and machine learning. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202302630 (2023).

  39. Gomez-Gualdron, D. A. et al. Computational design of metal–organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater. 26, 5632–5639 (2014).

    Article  CAS  Google Scholar 

  40. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  41. Gómez-Gualdrón, D. A. et al. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016).

    Article  Google Scholar 

  42. Anderson, R. & Gómez-Gualdrón, D. A. Increasing topological diversity during computational ‘synthesis’ of porous crystals: how and why. CrystEngComm 21, 1653–1665 (2019).

    Article  CAS  Google Scholar 

  43. Colón, Y. J., Gómez-Gualdrón, D. A. & Snurr, R. Q. Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications. Cryst. Growth Des. 17, 5801–5810 (2017).

    Article  Google Scholar 

  44. Boyd, P. G. & Woo, T. K. A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory. CrystEngComm 18, 3777–3792 (2016).

    Article  CAS  Google Scholar 

  45. Bureekaew, S., Balwani, V., Amirjalayer, S. & Schmid, R. Isoreticular isomerism in 4,4-connected paddle-wheel metal-organic frameworks: structural prediction by the reverse topological approach. CrystEngComm 17, 344–352 (2015).

    Article  CAS  Google Scholar 

  46. Keupp, J. & Schmid, R. TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discuss. 211, 79–101 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019). This work generated and screened a library of 325,000 hypothetical MOFs to identify top-performing materialswith preferential adsorption of CO2 over H2O.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Stylianou, K. C. et al. A guest-responsive fluorescent 3D microporous metal–organic framework derived from a long-lifetime pyrene core. J. Am. Chem. Soc. 132, 4119–4130 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe, T. & Sholl, D. S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28, 14114–14128 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Goldsmith, J., Wong-Foy, A. G., Cafarella, M. J. & Siegel, D. J. Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem. Mater. 25, 3373–3382 (2013).

    Article  CAS  Google Scholar 

  51. Chung, Y. G. et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014).

    Article  ADS  CAS  Google Scholar 

  52. Chung, Y. G. et al. Advances, updates and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019). The CoRE MOF-2019 database contains ~14,000 already-existing MOF structures ready for computational analysis and gas adsorption simulations. The database is open-source and is a community-driven effort to curate the existing MOF structures.

    Article  CAS  Google Scholar 

  53. Witman, M. et al. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chem. Sci. 7, 6263–6272 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gee, J. A. et al. Computational identification and experimental evaluation of metal-organic frameworks for xylene enrichment. J. Phys. Chem. C 120, 12075–12082 (2016).

    Article  CAS  Google Scholar 

  55. Moghadam, P. Z. et al. Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat. Commun. 9, 1378 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Bucior, B. J. et al. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol. Syst. Des. Eng. 4, 162–174 (2019).

    Article  CAS  Google Scholar 

  57. Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Kang, M. et al. High-throughput discovery of Ni(IN)2 for ethane/ethylene separation. Adv. Sci. 8, 2004940 (2021).

    Article  CAS  Google Scholar 

  59. Ren, J. et al. Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture. Chem. Mater. 33, 5108–5114 (2021).

    Article  CAS  Google Scholar 

  60. Nath, K., Ahmed, A., Siegel, D. J. & Matzger, A. J. Computational identification and experimental demonstration of high-performance methane sorbents. Angew. Chem. Int. Ed. 61, e202203575 (2022).

    Article  ADS  CAS  Google Scholar 

  61. Kim, S.-Y. et al. Discovery of high-performing metal–organic frameworks for on-board methane storage and delivery via LNG-ANG coupling: high-throughput screening, machine learning and experimental validation. Adv. Sci. 9, 2201559 (2022).

    Article  CAS  Google Scholar 

  62. Park, W., Oh, K. H., Lee, D., Kim, S.-Y. & Bae, Y.-S. Discovery of highly radon-selective metal-organic frameworks through high-throughput computational screening and experimental validation. Chem. Eng. J. 452, 139189 (2023).

    Article  CAS  Google Scholar 

  63. Banerjee, D. et al. Metal–organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 7, ncomms11831 (2016). This work demonstrates high-throughput computational screening of large databases of MOFs and identified SBMOF-1 as a highly selective material for xenon/krypton separation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Banerjee, D., Zhang, Z., Plonka, A. M., Li, J. & Parise, J. B. A calcium coordination framework having permanent porosity and high CO2/N2 selectivity. Cryst. Growth Des. 12, 2162–2165 (2012).

    Article  CAS  Google Scholar 

  65. Ahmed, A. et al. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 10, 2459–2471 (2017). Following computational screening, IRMOF-20 was experimentally demonstrated to exhibit high usable volumetric and gravimetric capacities for hydrogen storage.

    Article  CAS  Google Scholar 

  66. Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Rosen, A. S. et al. Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery. Matter 4, 1578–1597 (2021).

    Article  CAS  Google Scholar 

  68. Zarabadi-Poor, P. & Marek, R. Comment on ‘Database for CO2 separation performances of MOFs based on computational materials screening’. ACS Appl. Mater. Interfaces 11, 16261–16265 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Altintas, C., Velioglu, S. & Keskin, S. Reply to comment on ‘Database for CO2 separation performances of MOFs based on computational materials screening’. ACS Appl. Mater. Interfaces 11, 16266–16271 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Schneemann, A. et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Rogge, S. M. J. et al. Modeling gas adsorption in flexible metal-organic frameworks via hybrid Monte Carlo/molecular dynamics schemes. Adv. Theory Simul. 2, 1800177 (2019).

    Article  CAS  Google Scholar 

  72. Moghadam, P. Z. et al. Structure–mechanical stability relations of metal–organic frameworks via machine learning. Matter 1, 219–234 (2019).

    Article  Google Scholar 

  73. Healy, C. et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 419, 213388 (2020).

    Article  CAS  Google Scholar 

  74. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Nandy, A., Duan, C. & Kulik, H. J. Using machine learning and data mining to leverage community knowledge for the engineering of stable metal-organic frameworks. J. Am. Chem. Soc. 143, 17535–17547 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Batra, R., Chen, C., Evans, T. G., Walton, K. S. & Ramprasad, R. Prediction of water stability of metal–organic frameworks using machine learning. Nat. Mach. Intell. 2, 704–710 (2020).

    Article  Google Scholar 

  77. Farmahini, A. H., Krishnamurthy, S., Friedrich, D., Brandani, S. & Sarkisov, L. Performance-based screening of porous materials for carbon capture. Chem. Rev. 121, 10666–10741 (2021). This work reviews multiscale and performance-based screening workflows for adsorption-based gas separations and carbon capture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rajagopalan, A. K., Avila, A. M. & Rajendran, A. Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2. Int. J. Greenhouse Gas Control 46, 76–85 (2016).

    Article  CAS  Google Scholar 

  79. Khurana, M. & Farooq, S. Adsorbent screening for postcombustion CO2 capture: a method relating equilibrium isotherm characteristics to an optimum vacuum swing adsorption process performance. Ind. Eng. Chem. Res. 55, 2447–2460 (2016).

    Article  CAS  Google Scholar 

  80. Leperi, K. T., Chung, Y. G., You, F. & Snurr, R. Q. Development of a general evaluation metric for rapid screening of adsorbent materials for postcombustion CO2 capture. ACS Sustain. Chem. Eng. 7, 11529–11539 (2019).

    Article  CAS  Google Scholar 

  81. Lin, J.-B. et al. A scalable metal–organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Chung, Y. G. et al. In silico discovery of metal–organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci. Adv 2, e1600909 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  83. Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).

    Article  Google Scholar 

  84. Fernandez, M., Woo, T. K., Wilmer, C. E. & Snurr, R. Q. Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal-organic frameworks. J. Phys. Chem. C 117, 7681–7689 (2013).

    Article  CAS  Google Scholar 

  85. Simon, C. M., Mercado, R., Schnell, S. K., Smit, B. & Haranczyk, M. What are the best materials to separate a xenon/krypton mixture? Chem. Mater. 27, 4459–4475 (2015).

    Article  CAS  Google Scholar 

  86. Anderson, R., Rodgers, J., Argueta, E., Biong, A. & Gómez-Gualdrón, D. A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chem. Mater. 30, 6325–6337 (2018).

    Article  CAS  Google Scholar 

  87. Anderson, R., Biong, A. & Gómez-Gualdrón, D. A. Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model. J. Chem. Theory Comput. 16, 1271–1283 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Sun, Y. et al. Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Sci. Adv. 7, eabg3983 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taw, E. & Neaton, J. B. Accelerated discovery of CH4 uptake capacity metal-organic frameworks using Bayesian optimization. Adv. Theory Simul. 5, 2100515 (2022).

    Article  CAS  Google Scholar 

  90. Deshwal, A., Simon, C. M. & Doppa, J. R. Bayesian optimization of nanoporous materials. Mol. Syst. Des. Eng. 6, 1066–1086 (2021).

    Article  CAS  Google Scholar 

  91. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066–8129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Denysenko, D. et al. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. Chem. A Eur. J. 17, 1837–1848 (2011).

    Article  CAS  Google Scholar 

  93. Bucior, B. J. et al. Identification schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. Cryst. Growth Des. 19, 6682–6697 (2019).

    Article  CAS  Google Scholar 

  94. Vandenhaute, S., Cools-Ceuppens, M., DeKeyser, S., Verstraelen, T. & Van Speybroeck, V. Machine learning potentials for metal–organic frameworks using an incremental learning approach. NPJ Comput. Mater. 9, 19 (2023).

    Article  ADS  Google Scholar 

  95. Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng, Z. et al. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e20231 (2023). This study harnessed the capability of large language models like GPT-4 to guide the synthesis and discovery of MOFs.

    Article  Google Scholar 

  98. Park, H., Kang, Y., Choe, W. & Kim, J. Mining insights on metal–organic framework synthesis from scientific literature texts. J. Chem. Inf. Model. 62, 1190–1198 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Glasby, L. T. et al. DigiMOF: a database of metal–organic framework synthesis information generated via text mining. Chem. Mater. 35, 4510–4524 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nazarian, D., Camp, J. S. & Sholl, D. S. A comprehensive set of high-quality point charges for simulations of metal-organic frameworks. Chem. Mater. 28, 785–793 (2016).

    Article  CAS  Google Scholar 

  101. Majumdar, S., Moosavi, S. M., Jablonka, K. M., Ongari, D. & Smit, B. Diversifying databases of metal organic frameworks for high-throughput computational screening. ACS Appl. Mater. Interfaces 13, 61004–61014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oktavian, R. et al. Computational characterization of Zr-oxide MOFs for adsorption applications. ACS Appl. Mater. Interfaces 14, 56938–56947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burner, J. et al. ARC-MOF: a diverse database of metal-organic frameworks with DFT-derived partial atomic charges and descriptors for machine learning. Chem. Mater. 35, 900–916 (2023).

    Article  CAS  Google Scholar 

  104. Nandy, A. et al. A database of ultrastable MOFs reassembled from stable fragments with machine learning models. Matter 6, 1585–1603 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.Z.M. acknowledges support from the Department of Science, Innovation and Technology (DSIT) and the Royal Academy of Engineering under the Industrial Fellowships programme (IF2223–110). Y.G.C. acknowledges support from the National Research Foundation of Korea (NRF) from grants funded by the Korea government (MSIT; nos. 2020R1C1C1010373 and 2021M3D3A1A01022104). R.Q.S. acknowledges support from the US Department of Energy (DE-FG02-08ER15967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall Q. Snurr.

Ethics declarations

Competing interests

R.Q.S. has a financial interest in the startup company NuMat Technologies, which is commercializing MOFs. P.Z.M. and Y.G.C. declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, P.Z., Chung, Y.G. & Snurr, R.Q. Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat Energy 9, 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01417-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing