Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes

Abstract

Limited understanding exists about the operation of bipolar membranes (BPMs) in forward bias to convert protonic gradients into electrical work, despite their emerging role in many electrochemical devices. In these device contexts, the BPM is typically exposed to complex electrolyte mixtures, but their impact on polarization remains poorly understood. Here we develop a mechanistic model explaining the forward bias polarization behaviour of BPMs in mixed electrolytes with different acidities/basicities. This model invokes that weak acids/bases accumulate in the BPM and impose an ionic blockade that inhibits the recombination of stronger acids/bases, resulting in a substantial neutralization overpotential. We demonstrate the utility of our model for fuel cells and redox flow batteries and introduce two materials design strategies for mitigating this inhibition. Lastly, we apply our findings to enhance the energy efficiency of carbonate management in CO2 electrolysers. This work highlights how non-equilibrium local environments at membrane–membrane interfaces can define the efficiency of protonic-to-electrical energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Existing understanding of ionic processes in BPMs.
Fig. 2: Electrochemical characterization of BPMs containing KOH–KOAc mixtures.
Fig. 3: Electrochemical characterization of BPM cells with varied electrolyte properties.
Fig. 4: Concentration and pH profiles across BPMs as a function of polarization region.
Fig. 5: Electrochemical characterization of BPMs with varying concentrations of CO2 dissolved in KOH.
Fig. 6: Materials design strategies to raise limiting current densities.
Fig. 7: Comparing pH swing and forward bias BPM CO2 electrolysers.
Fig. 8: Modes of operation for forward bias BPM CO2 electrolysers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Pärnamäe, R. et al. Bipolar membranes: a review on principles, latest developments, and applications. J. Memb. Sci. 617, 118538 (2021).

    Article  Google Scholar 

  2. Giesbrecht, P. K. & Freund, M. S. Recent advances in bipolar membrane design and applications. Chem. Mater. 32, 8060–8090 (2020).

    Article  Google Scholar 

  3. Blommaert, M. A. et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 6, 2539–2548 (2021).

    Article  Google Scholar 

  4. Tufa, R. A. et al. Bipolar membrane and interface materials for electrochemical energy systems. ACS Appl. Energy Mater. 4, 7419–7439 (2021).

    Article  Google Scholar 

  5. Yan, Z. & Mallouk, T. E. Bipolar membranes for ion management in (photo)electrochemical energy conversion. Acc. Mater. Res. 2, 1156–1166 (2021).

    Article  Google Scholar 

  6. Simons, R. & Khanarian, G. Water dissociation in bipolar membranes: experiments and theory. J. Membr. Biol. 38, 11–30 (1978).

    Article  Google Scholar 

  7. Ramírez, P., Rapp, H.-J., Mafé, S. & Bauer, B. Bipolar membranes under forward and reverse bias conditions. Theory vs. experiment. J. Electroanal. Chem. 375, 101–108 (1994).

    Article  Google Scholar 

  8. McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. ChemSusChem 7, 3021–3027 (2014).

    Article  Google Scholar 

  9. Vargas-Barbosa, N. M., Geise, G. M., Hickner, M. A. & Mallouk, T. E. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem 7, 3017–3020 (2014).

    Article  Google Scholar 

  10. Luo, J. et al. Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016).

    Article  Google Scholar 

  11. Mayerhöfer, B. et al. Bipolar membrane electrode assemblies for water electrolysis. ACS Appl. Energy Mater. 3, 9635–9644 (2020).

    Article  Google Scholar 

  12. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Article  Google Scholar 

  13. Vermaas, D. A. & Smith, W. A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 1, 1143–1148 (2016).

    Article  Google Scholar 

  14. Li, Y. C. et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016).

    Article  Google Scholar 

  15. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    Article  Google Scholar 

  16. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

    Article  Google Scholar 

  17. Siritanaratkul, B. et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular Eelectrocatalysts. J. Am. Chem. Soc. 144, 7551–7556 (2022).

    Article  Google Scholar 

  18. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  Google Scholar 

  19. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article  Google Scholar 

  20. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  Google Scholar 

  21. Ding, Y., Cai, P. & Wen, Z. Electrochemical neutralization energy: from concept to devices. Chem. Soc. Rev. 50, 1495–1511 (2021).

    Article  Google Scholar 

  22. Yan, Z. et al. High-voltage aqueous redox flow batteries enabled by catalyzed water dissociation and acid–base neutralization in bipolar membranes. ACS Cent. Sci. 7, 1028–1035 (2021).

    Article  Google Scholar 

  23. Metlay, A. S. et al. Three-chamber design for aqueous acid–base redox flow batteries. ACS Energy Lett. 7, 908–913 (2022).

    Article  Google Scholar 

  24. Pärnamäe, R. et al. The acid–base flow battery: sustainable energy storage via reversible water dissociation with bipolar membranes. Membranes 10, 409 (2020).

    Article  Google Scholar 

  25. Al-Dhubhani, E., Pärnamäe, R., Post, J. W., Saakes, M. & Tedesco, M. Performance of five commercial bipolar membranes under forward and reverse bias conditions for acid–base flow battery applications. J. Memb. Sci. 7, 119748 (2021).

    Article  Google Scholar 

  26. Bui, J. C., Digdaya, I., Xiang, C., Bell, A. T. & Weber, A. Z. Understanding multi-ion transport mechanisms in bipolar membranes. ACS Appl. Mater. Interfaces 12, 52509–52526 (2020).

    Article  Google Scholar 

  27. Mitchell, J. B., Chen, L., Langworthy, K., Fabrizio, K. & Boettcher, S. W. Catalytic proton–hydroxide recombination for forward-bias bipolar membranes. ACS Energy Lett. 7, 3967–3973 (2022).

    Article  Google Scholar 

  28. Sokirko, A. V., Ramírez, P., Manzanares, J. A. & Mafés, S. Modeling of forward and reverse bias conditions in bipolar membranes. Ber. Bunsen. Ges. Phys. Chem. 97, 1040–1048 (1993).

    Article  Google Scholar 

  29. Ziv, N., Mustain, W. E. & Dekel, D. R. The effect of ambient carbon dioxide on anion‐exchange membrane fuel cells. ChemSusChem 11, 1136–1150 (2018).

    Article  Google Scholar 

  30. Lee, M.-Y. et al. Current achievements and the future direction of electrochemical CO2 reduction: a short review. Crit. Rev. Environ. Sci. Technol. 50, 769–815 (2020).

    Article  Google Scholar 

  31. Dinh, H. Q., Toh, W. L., Chu, A. T. & Surendranath, Y. Neutralization short-circuiting with weak electrolytes erodes the efficiency of bipolar membranes. ACS Appl. Mater. Interfaces 15, 4001–4010 (2023).

    Article  Google Scholar 

  32. Vermaas, D. A., Wiegman, S., Nagaki, T. & Smith, W. A. Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting. Sustain. Energy Fuels 2, 2006–2015 (2018).

    Article  Google Scholar 

  33. Haynes, W. M., Lide, D. R. & Bruno, T. J. CRC Handbook of Chemistry and Physics 97th edn (CRC Press, 2016).

  34. Grew, K. N., McClure, J. P., Chu, D., Kohl, P. A. & Ahlfield, J. M. Understanding transport at the acid–alkaline interface of bipolar membranes. J. Electrochem. Soc. 163, F1572–F1587 (2016).

    Article  Google Scholar 

  35. Ünlü, M., Zhou, J. & Kohl, P. A. Hybrid anion and proton exchange membrane fuel cells. J. Phys. Chem. C. 113, 11416–11423 (2009).

    Article  Google Scholar 

  36. Daud, S. S., Norrdin, M. A., Jaafar, J. & Sudirman, R. The effect of material on bipolar membrane fuel cell performance: a review. IOP Conf. Ser. Mater. Sci. Eng. 736, 032003 (2020).

    Article  Google Scholar 

  37. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (John Wiley & Sons: New York, 2001).

  38. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  39. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  Google Scholar 

  40. Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).

    Article  Google Scholar 

  41. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Article  Google Scholar 

  42. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  Google Scholar 

  43. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  Google Scholar 

  44. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  Google Scholar 

  45. Xie, K. et al. Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading. Nat. Commun. 13, 3070 (2022).

    Article  Google Scholar 

  46. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  Google Scholar 

  47. O’Brien, C. P. et al. 2 Conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  48. Xu, Y. et al. A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule 6, 1333–1343 (2022).

    Article  Google Scholar 

  49. ‘Timothy’ Kim, J. Y. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022).

    Article  Google Scholar 

  50. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  51. Qiao, Y. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 12, 2357–2364 (2022).

    Article  Google Scholar 

  52. Iddya, A. et al. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. Nat. Nanotechnol. 17, 1222–1228 (2022).

    Article  Google Scholar 

  53. Chen, Y. et al. High-performance bipolar membrane development for improved water dissociation. ACS Appl. Polym. Mater. 2, 4559–4569 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the entire Surendranath Lab for the enriching discussions and their support. This work was supported by the Department of Energy (DOE) under award number DE-SC0021634, which also supported A.T.C. and E.R.S. This work made use of the MRSEC Shared Experimental Facilities at MIT, which is supported by the National Science Foundation under award number DMR-1419807. W.L.T. is supported by a National Science Scholarship awarded by the Agency for Science, Technology and Research (A*STAR), Singapore. H.Q.D. is supported by Undergraduate Research Opportunities Program (UROP) awards from the MIT UROP office and the MIT Energy Initiative. E.R.S. is also supported in part by a Postdoctoral Fellowship awarded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

W.L.T., H.Q.D. and Y.S. conceptualized the project. W.L.T., H.Q.D., A.T.C. and E.R.S. conducted experiments. W.L.T., H.Q.D. and Y.S. wrote and edited the manuscript.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Sebastian Oener, Peter Pintauro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–3 and Notes 1–8.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, W.L., Dinh, H.Q., Chu, A.T. et al. The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes. Nat Energy 8, 1405–1416 (2023). https://doi.org/10.1038/s41560-023-01404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01404-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing