Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multi-scale physics of bipolar membranes in electrochemical processes

Abstract

Bipolar membranes (BPMs) enable control of ion concentrations and fluxes in electrochemical cells suitable for a wide range of applications. Here we present the multi-scale physics of BPMs in an electrochemical engineering context and articulate design principles to drive the development of advanced BPMs. The chemistry, structure, and physics of BPMs are illustrated and related to the thermodynamics, transport phenomena, and chemical kinetics that dictate ion and species fluxes and selectivity. These interactions give rise to emergent structure–property–performance relationships that yield design criteria for BPMs that achieve high permselectivity, durability, and voltaic efficiency. The resulting performance trade-offs for BPMs are presented in the context of emerging applications in energy conversion or storage, and environmental remediation. By connecting the fundamental physical phenomena in BPMs to device-level performance and engineering, we aim to facilitate the development of next-generation BPMs for sustainable electrochemical processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of BPM design considerations.
Fig. 2: Overview of thermodynamics, transport phenomena, and kinetics in BPMs.
Fig. 3: Experimental system for characterizing BPMs.
Fig. 4: Performance trade-offs in BPMs.
Fig. 5: MEAs using BPMs.
Fig. 6: Acid–base recombination effects for BPMs operating in forward bias.
Fig. 7: Process schematics for BPM-ED systems applied in environmental remediation processes.
Fig. 8: Timeline of physical and chemical BPM degradation modes.

Similar content being viewed by others

References

  1. Blommaert, M. A. et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 6, 2539–2548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pärnamäe, R. et al. Bipolar membranes: a review on principles, latest developments, and applications. J. Memb. Sci. 617, 118538 (2021).

    Article  Google Scholar 

  3. Bui, J. C. et al. Continuum modeling of porous electrodes for electrochemical synthesis. Chem. Rev. 122, 11022–11084 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Mafé, S. & Ramirez, P. Electrochemical characterization of polymer ion-exchange bipolar membranes. Acta Polym. 48, 234–250 (1997).

    Article  Google Scholar 

  5. Mafé, S., Ramírez, P. & Alcaraz, A. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane. Chem. Phys. Lett. 294, 406–412 (1998).

    Article  Google Scholar 

  6. Craig, N. P. Electrochemical Behavior of Bipolar Membranes. PhD thesis, Univ. California, Berkeley (2013).

  7. Bui, J. C. et al. Engineering catalyst − electrolyte microenvironments to optimize the activity and selectivity for the electrochemical reduction of CO2 on Cu and Ag. Acc. Chem. Res. 55, 484–494 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  CAS  Google Scholar 

  9. Frilette, V. J. Preparation and characterization of bipolar ion-exchange membranes. J. Phys. Chem. 60, 435–439 (1956).

    Article  CAS  Google Scholar 

  10. Bazinet, L., Lamarche, F. & Ippersiel, D. Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci. Technol. 9, 107–113 (1998).

    Article  CAS  Google Scholar 

  11. Wilhelm, F. G. Bipolar Membrane Electrodialysis: Membrane Development and Transport Characteristics. PhD thesis, Univ. Twente (2001).

  12. Garcia-Herrero, I., Margallo, M., Onandía, R., Aldaco, R. & Irabien, A. Connecting wastes to resources for clean technologies in the chlor-alkali industry: a life cycle approach. Clean Technol. Environ. Policy 20, 229–242 (2018).

    Article  CAS  Google Scholar 

  13. Chen, L., Xu, Q. & Boettcher, S. W. Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis. Joule https://doi.org/10.1016/j.joule.2023.06.011 (2023).

  14. Lucas, É. et al. Asymmetric bipolar membrane for high current density electrodialysis operation with exceptional stability. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-n4c6x (2023).

  15. Mitchell, J. B., Chen, L., Langworthy, K., Fabrizio, K. & Boettcher, S. W. Catalytic proton-hydroxide recombination for forward-bias bipolar membranes. ACS Energy Lett. 7, 3967–3973 (2022).

    Article  CAS  Google Scholar 

  16. Ankoliya, D. et al. Techno-economic analysis of integrated bipolar membrane electrodialysis and batch reverse osmosis for water and chemical recovery from dairy wastewater. J. Clean. Prod. 420, 138264 (2023).

  17. Boettcher, S. et al. Water-dissociation catalysis near the reversible limit in bipolar membrane electrolyzers. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3447094/v1 (2023).

  18. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, K., Yu, W. S., Ge, X., Wu, L. & Xu, T. Molecular dynamics insight into phase separation and transport in anion-exchange membranes: effect of hydrophobicity of backbones. J. Memb. Sci. 661, 120922 (2022).

    Article  CAS  Google Scholar 

  20. Powers, D. et al. Freestanding bipolar membranes with an electrospun junction for high current density water splitting. ACS Appl. Mater. Interfaces 14, 36092–36104 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Bui, J. C., Digdaya, I., Xiang, C., Bell, A. T. & Weber, A. Z. Understanding multi-ion transport mechanisms in bipolar membranes. ACS Appl. Mater. Interfaces 12, 52509–52526 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Luo, X. et al. Anion exchange ionomers: impact of chemistry on thin-film properties. Adv. Funct. Mater. 31, 2008778 (2021).

    Article  CAS  Google Scholar 

  23. Oener, S. Z., Twight, L. P., Lindquist, G. A. & Boettcher, S. W. Thin cation-exchange layers enable high-current-density bipolar membrane electrolyzers via improved water transport. ACS Energy Lett. 6, 1–8 (2021).

    Article  CAS  Google Scholar 

  24. Thiele, S. et al. Bipolar membrane electrode assemblies for water electrolysis. ACS Appl. Energy Mater. 3, 9635–9644 (2020).

    Article  Google Scholar 

  25. Goyal, P., Kusoglu, A. & Weber, A. Z. Coalescing cation selectivity approaches in ionomers. ACS Energy Lett. 8, 1551–1566 (2023).

    Article  CAS  Google Scholar 

  26. Crothers, A. R., Darling, R. M., Kusoglu, A., Radke, C. J. & Weber, A. Z. Theory of multicomponent phenomena in cation-exchange membranes: part II. Transport model and validation. J. Electrochem. Soc. 167, 013548 (2020).

    Article  Google Scholar 

  27. Kamcev, J. et al. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation. Phys. Chem. Chem. Phys. 18, 6021–6031 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Crothers, A. R., Darling, R. M., Kusoglu, A., Radke, C. J. & Weber, A. Z. Theory of multicomponent phenomena in cation-exchange membranes: part I. Thermodynamic model and validation. J. Electrochem. Soc. 167, 013547 (2020).

    Article  Google Scholar 

  29. Parasuraman, A., Lim, T. M., Menictas, C. & Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27–40 (2013).

    Article  CAS  Google Scholar 

  30. Bui, J. C. et al. Analysis of bipolar membranes for electrochemical capture from air and oceanwater. Energy Environ. Sci. https://doi.org/10.1039/D3EE01606D (2023).

  31. Onsager, L. Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    Article  CAS  Google Scholar 

  32. Mareev, S. A. et al. A comprehensive mathematical model of water splitting in bipolar membranes: Impact of the spatial distribution of fixed charges and catalyst at bipolar junction. J. Memb. Sci. 603, 118010 (2020).

    Article  CAS  Google Scholar 

  33. Onishi, N., Minagawa, M., Tanioka, A. & Matsumoto, H. Current–voltage characteristics and solvent dissociation of bipolar membranes in organic solvents. Membranes 12, 1236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal-liquid interfaces. ACS Cent. Sci. 7, 1045–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dinh, H. Q., Toh, W. L., Chu, A. T. & Surendranath, Y. Neutralization short-circuiting with weak electrolytes erodes the efficiency of bipolar membranes. ACS Appl. Mater. Interfaces 15, 4001–4010 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Pärnamäe, R. et al. Origin of limiting and overlimiting currents in bipolar membranes. Environ. Sci. Technol. 57, 9664–9674 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Newman, J. & Thomas-Alyea, K. E. Electrochemical Systems (John Wiley and Sons, 2004).

  38. Bird, B. R., Stewart, W. E. & Edwin, N. L. Transport Phenomena. (Wiley, 2007).

  39. Bui, J. C., Corpus, K. R. M., Bell, A. T. & Weber, A. Z. On the nature of field enhanced water dissociation in bipolar membranes. J. Phys. Chem. C 125, 24974–24987 (2021).

    Article  CAS  Google Scholar 

  40. Peng, J., Roy, A. L., Greenbaum, S. G. & Zawodzinski, T. A. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane. J. Power Sources 380, 64–75 (2018).

    Article  CAS  Google Scholar 

  41. Ehlinger, V. M., Crothers, A. R., Kusoglu, A. & Weber, A. Z. Modeling proton-exchange-membrane fuel cell performance/degradation tradeoffs with chemical scavengers. J. Phys. Energy 2, 044006 (2020).

    Article  Google Scholar 

  42. Petrov, K. V. et al. Anion-exchange membranes with internal microchannels for water control in CO2 electrolysis. Sustain. Energy Fuels 6, 5077–5088 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weng, L. C., Bell, A. T. & Weber, A. Z. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation. Energy Environ. Sci. 13, 3592–3606 (2020).

    Article  CAS  Google Scholar 

  44. Marin, D. H. et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers. Joule 7, 765–781 (2023).

    Article  CAS  Google Scholar 

  45. Fong, K. D., Bergstrom, H. K., McCloskey, B. D. & Mandadapu, K. K. Transport phenomena in electrolyte solutions: nonequilibrium thermodynamics and statistical mechanics. AIChE J. 66, 1–23 (2020).

    Article  Google Scholar 

  46. Marioni, N. et al. Impact of ion-ion correlated motion on salt transport in solvated ion exchange membranes. ACS Macro Lett. 11, 1258–1264 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Crothers, A. R., Darling, R. M., Kushner, D. I., Perry, M. L. & Weber, A. Z. Theory of multicomponent phenomena in cation-exchange membranes: part III. Transport in vanadium redox-flow-battery separators. J. Electrochem. Soc. 167, 013549 (2020).

  48. Fong, K. D., Self, J., McCloskey, B. D. & Persson, K. A. Ion correlations and their impact on transport in polymer-based electrolytes. Macromolecules 54, 2575–2591 (2021).

    Article  CAS  Google Scholar 

  49. Zhang, H., Cheng, D., Xiang, C. & Lin, M. Tuning the interfacial electrical field of bipolar membranes with temperature and electrolyte concentration for enhanced water dissociation. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.3c00142 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kaiser, V., Bramwell, S. T., Holdsworth, P. C. W. & Moessner, R. Onsager’s Wien effect on a lattice. Nat. Mater. 12, 1033–1037 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, L., Oener, S. Z., Fabrizio, K. & Boettcher, S. W. Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat. Commun. 13, 3846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, M., Digdaya, I. A. & Xiang, C. Modeling the electrochemical behavior and interfacial junction profiles of bipolar membranes at solar flux relevant operating current densities. Sustain. Energy Fuels 5, 2149–2158 (2021).

    Article  CAS  Google Scholar 

  53. Bunker, B. C. & Casey, W. H. The Aqueous Chemistry of Oxides (Oxford Univ. Press, 2016).

  54. Vermaas, D. A., Wiegman, S. & Smith, W. A. Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting. Sustain. Energy Fuels https://doi.org/10.1039/c8se00118a (2018).

  55. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 1138–1148 (2017).

    Article  Google Scholar 

  56. Zhang, H. & Geise, G. M. Modeling the water permeability and water/salt selectivity tradeoff in polymer membranes. J. Memb. Sci. 520, 790–800 (2016).

    Article  CAS  Google Scholar 

  57. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Kamcev, J. Reformulating the permselectivity-conductivity tradeoff relation in ion-exchange membranes. J. Polym. Sci. 59, 2510–2520 (2021).

    Article  CAS  Google Scholar 

  59. Shen, C., Wycisk, R. & Pintauro, P. N. High performance electrospun bipolar membrane with a 3D junction. Energy Environ. Sci. 10, 1435–1442 (2017).

    Article  CAS  Google Scholar 

  60. Kitto, D. & Kamcev, J. The need for ion-exchange membranes with high charge densities. J. Memb. Sci. 677, 121608 (2023).

    Article  CAS  Google Scholar 

  61. Xue, J., Liu, L., Liao, J., Shen, Y. & Li, N. UV-crosslinking of polystyrene anion exchange membranes by azidated macromolecular crosslinker for alkaline fuel cells. J. Memb. Sci. 535, 322–330 (2017).

    Article  CAS  Google Scholar 

  62. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Xiao, J. et al. Water-fed hydroxide exchange membrane electrolyzer enabled by a fluoride-incorporated nickel-iron oxyhydroxide oxygen evolution electrode. ACS Catal. 11, 264–270 (2021).

    Article  CAS  Google Scholar 

  64. Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).

    Article  CAS  Google Scholar 

  65. Krivina, R. A. et al. Anode catalysts in anion-exchange-membrane electrolysis without supporting electrolyte: conductivity, dynamics, and ionomer degradation. Adv. Mater. 34, 1–10 (2022).

    Article  Google Scholar 

  66. Li, L., Wang, P., Shao, Q. & Huang, X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33, 2004243 (2021).

    Article  CAS  Google Scholar 

  67. Plevová, M., Hnát, J. & Bouzek, K. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. J. Power Sources 507, 230072 (2021).

  68. Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2022).

    Article  CAS  Google Scholar 

  69. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  70. Blommaert, M. A. et al. Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction. J. Mater. Chem. A 9, 11179–11186 (2021).

    Article  CAS  Google Scholar 

  71. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eriksson, B. et al. Mitigation of carbon crossover in CO2 electrolysis by use of bipolar membranes. J. Electrochem. Soc. 169, 034508 (2022).

    Article  CAS  Google Scholar 

  73. Lees, E. W. et al. Electrolytic methane production from reactive carbon solutions. ACS Energy Lett. 7, 1712–1718 (2022).

    Article  CAS  Google Scholar 

  74. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Article  Google Scholar 

  75. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    Article  CAS  Google Scholar 

  76. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    Article  CAS  Google Scholar 

  79. Lees, E. W. et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 5, 2165–2173 (2020).

    Article  CAS  Google Scholar 

  80. Lees, E. W., Bui, J. C., Song, D., Weber, A. Z. & Berlinguette, C. P. Continuum model to define the chemistry and mass transfer in a bicarbonate electrolyzer. ACS Energy Lett. 7, 834–842 (2022).

    Article  CAS  Google Scholar 

  81. Fink, A. G. et al. Electrolytic conversion of carbon capture solutions containing carbonic anhydrase. J. Inorg. Biochem. 231, 111782 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, Z. et al. Porous metal electrodes enable efficient electrolysis of carbon capture solutions. Energy Environ. Sci. 15, 705–713 (2022).

    Article  CAS  Google Scholar 

  83. Li, T., Lees, E. W., Zhang, Z. & Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 5, 2624–2630 (2020).

    Article  CAS  Google Scholar 

  84. Zhang, Z. et al. Conversion of reactive carbon solutions into CO at low voltage and high carbon efficiency. ACS Cent. Sci. 8, 749–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perry, M. L., Rodby, K. E. & Brushett, F. R. Untapped potential: the need and opportunity for high-voltage aqueous redox flow batteries. ACS Energy Lett. 7, 659–667 (2022).

    Article  CAS  Google Scholar 

  86. Arevalo-Cid, P., Dias, P., Mendes, A. & Azevedo, J. Redox flow batteries: a new frontier on energy storage. Sustain. Energy Fuels 5, 5366–5419 (2021).

    Article  CAS  Google Scholar 

  87. Yan, Z. et al. High-voltage aqueous redox flow batteries enabled by catalyzed water dissociation and acid-base neutralization in bipolar membranes. ACS Cent. Sci. 7, 1028–1035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, R. Redox flow batteries: mitigating cross-contamination via bipolar redox-active materials and bipolar membranes. Curr. Opin. Electrochem. 37, 101188 (2023).

    Article  CAS  Google Scholar 

  89. Dai, J. et al. A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency. Polymer 140, 233–239 (2018).

    Article  CAS  Google Scholar 

  90. Metlay, A. S. et al. Three-chamber design for aqueous acid-base redox flow batteries. ACS Energy Lett. 7, 908–913 (2022).

    Article  CAS  Google Scholar 

  91. van Egmond, W. J. et al. Performance of an environmentally benign acid base flow battery at high energy density. Int. J. Energy Res. 42, 1524–1535 (2018).

    Article  Google Scholar 

  92. Lu, S., Pan, J., Huang, A., Zhuang, L. & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA. 105, 20611–20614 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  93. Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654–2675 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Peng, S. et al. A self-humidifying acidic-alkaline bipolar membrane fuel cell. J. Power Sources 299, 273–279 (2015).

    Article  CAS  Google Scholar 

  95. Li, Q. et al. Theoretical design strategies of bipolar membrane fuel cell with enhanced self-humidification behavior. J. Power Sources 307, 358–367 (2016).

    Article  CAS  Google Scholar 

  96. Toh, W. L., Dinh, H. Q., Chu, A. T., Sauvé, E. R. & Surendranath, Y. The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes. Nat. Energy 8, 1405–1416 (2023).

    Article  CAS  Google Scholar 

  97. Sharifian, R., Boer, L., Wagterveld, R. M. & Vermaas, D. A. Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane. Chem. Eng. J. 438, 135326 (2022).

    Article  CAS  Google Scholar 

  98. Iizuka, A. et al. A process for capturing CO2 from the atmosphere. Ind. Eng. Chem. Res. 4, 1–11 (2022).

    Google Scholar 

  99. Eisaman, M. D., Alvarado, L., Larner, D., Wang, P. & Littau, K. A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy Environ. Sci. 4, 4031–4037 (2011).

    Article  CAS  Google Scholar 

  100. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, Z. et al. Cement clinker precursor production in an electrolyser. Energy Environ. Sci. 15, 5129–5136 (2022).

    Article  CAS  Google Scholar 

  102. Zhang, Z. B., Mowbray, B. A. W., Parkyn, C. T. E., Kim, Y. & Berlinguette, C. P. Electrolytic cement clinker production sustained through orthogonalization of ion vectors. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-0zcw9 (2023).

  103. Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

  104. van Linden, N., Bandinu, G. L., Vermaas, D. A., Spanjers, H. & van Lier, J. B. Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production. J. Clean. Prod. 259, 120788 (2020).

    Article  Google Scholar 

  105. Dong, H., Laguna, C. M., Liu, M. J., Guo, J. & Tarpeh, W. A. Electrified ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine. Environ. Sci. Technol. 56, 16134–16143 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Sabatino, F., Gazzani, M., Gallucci, F. & Van Sint Annaland, M. Modeling, optimization, and techno-economic analysis of bipolar membrane electrodialysis for direct air capture processes. Ind. Eng. Chem. Res. 61, 12668–12679 (2022).

    Article  CAS  Google Scholar 

  107. Zhao, S. et al. Engineering antifouling reverse osmosis membranes: a review. Desalination 499, 114857 (2021).

    Article  CAS  Google Scholar 

  108. Anis, S. F., Hashaikeh, R. & Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 452, 159–195 (2019).

    Article  CAS  Google Scholar 

  109. Calado, G. & Castro, R. Hydrogen production from offshore wind parks: current situation and future perspectives. Appl. Sci. 11, e202200372 (2021).

    Article  Google Scholar 

  110. Han, J. H. Exploring the interface of porous cathode/bipolar membrane for mitigation of inorganic precipitates in direct seawater electrolysis. ChemSusChem 15, e202200372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Han, J. H. et al. Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chem. Eng. J. 429, 132383 (2022).

    Article  CAS  Google Scholar 

  112. Han, J. H. Complete suppression of dispersed inorganic precipitates in reverse electrodialysis via seawater acidification. Ind. Eng. Chem. Res. 61, 9165–9170 (2022).

    Article  CAS  Google Scholar 

  113. Andreeva, M. A. et al. Mitigation of membrane scaling in electrodialysis by electroconvection enhancement, pH adjustment and pulsed electric field application. J. Memb. Sci. 549, 129–140 (2018).

    Article  CAS  Google Scholar 

  114. Davis, J. T., Qi, J., Fan, X., Bui, J. C. & Esposito, D. V. Floating membraneless PV-electrolyzer based on buoyancy-driven product separation. Int. J. Hydrogen Energy 1224–1238, https://doi.org/10.1016/j.ijhydene.2017.11.086 (2017).

  115. Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019).

    Article  CAS  Google Scholar 

  116. Blommaert, M. A., Verdonk, J. A. H., Blommaert, H. C. B., Smith, W. A. & Vermaas, D. A. Reduced ion crossover in bipolar membrane electrolysis via increased current density, molecular size and valence. ACS Appl. Energy Mater. 3, 5804–5812 (2020).

  117. Dionigi, F., Reier, T., Pawolek, Z., Gliech, M. & Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Rossi, R. et al. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer. Energy Environ. Sci. 14, 6041–6049 (2021).

    Article  CAS  Google Scholar 

  119. Katzenberg, A., Angulo, A., Kusoglu, A. & Modestino, M. A. Impacts of organic sorbates on the ionic conductivity and nanostructure of perfluorinated sulfonic-acid ionomers. Macromolecules 54, 5187–5195 (2021).

    Article  CAS  Google Scholar 

  120. Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. 48, 1685–1718 (2010).

    CAS  Google Scholar 

  121. Mayerhöfer, B. et al. On the effect of anion exchange ionomer binders in bipolar electrode membrane interface water electrolysis. J. Mater. Chem. A 9, 14285–14295 (2021).

  122. Chen, Y. et al. High-performance bipolar membrane development for improved water dissociation. ACS Appl. Polym. Mater. 2, 4559–4569 (2020).

    Article  CAS  Google Scholar 

  123. Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    Article  CAS  Google Scholar 

  124. Krivina, R. A. et al. Three-electrode study of electrochemical ionomer degradation relevant to anion-exchange-membrane water electrolyzers. ACS Appl. Mater. Interfaces 14, 18261–18274 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Lindquist, G. A. et al. Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation. ACS Appl. Mater. Interfaces 13, 51917–51924 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Lindquist, G. A. et al. Oxidative instability of ionomers in hydroxide-exchange-membrane water electrolyzers. Energy Environ. Sci. https://doi.org/10.1039/d3ee01293j (2023).

  127. Maurya, S. et al. On the origin of permanent performance loss of anion exchange membrane fuel cells: electrochemical oxidation of phenyl group. J. Power Sources 436, 226866 (2019).

    Article  CAS  Google Scholar 

  128. Kusoglu, A., Calabrese, M. & Weber, A. Z. Effect of mechanical compression on chemical degradation of Nafion membranes. ECS Electrochem. Lett. 3, F33 (2014).

  129. Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article  CAS  Google Scholar 

  130. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. & Tisack, M. E. Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48 (2004).

    Article  CAS  Google Scholar 

  131. Pianca, M., Barchiesi, E., Esposto, G. & Radice, S. End groups in fluoropolymers. J. Fluor. Chem. 95, 71–84 (1999).

    Article  CAS  Google Scholar 

  132. Danilczuk, M., Schlick, S. & Coms, F. D. Cerium(III) as a stabilizer of perfluorinated membranes used in fuel cells: In situ detection of early events in the ESR resonator. Macromolecules 42, 8943–8949 (2009).

    Article  CAS  Google Scholar 

  133. Gubler, L. & Koppenol, W. H. Kinetic simulation of the chemical stabilization mechanism in fuel cell membranes using cerium and manganese redox couples. J. Electrochem. Soc. 159, B211–B218 (2011).

    Article  Google Scholar 

  134. Trogadas, P., Parrondo, J. & Ramani, V. Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger. Electrochem. Solid-State Lett. 11, B113 (2008).

  135. Collette, F. M., Lorentz, C., Gebel, G. & Thominette, F. Hygrothermal aging of Nafion®. J. Memb. Sci. 330, 21–29 (2009).

    Article  CAS  Google Scholar 

  136. Arthurs, C. & Kusoglu, A. Compressive creep of polymer electrolyte membranes: a case study for electrolyzers. ACS Appl. Energy Mater. 4, 3249–3254 (2021).

    Article  CAS  Google Scholar 

  137. Sadeghi Alavijeh, A., Khorasany, R. M. H., Habisch, A., Wang, G. G. & Kjeang, E. Creep properties of catalyst coated membranes for polymer electrolyte fuel cells. J. Power Sources 285, 16–28 (2015).

    Article  CAS  Google Scholar 

  138. Xu, Z. et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm–2. Nat. Commun. 14, 1619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rajesh, A. M., Chakrabarty, T., Prakash, S. & Shahi, V. K. Effects of metal alkoxides on electro-assisted water dissociation across bipolar membranes. Electrochim. Acta 66, 325–331 (2012).

    Article  CAS  Google Scholar 

  140. Wang, Q., Wu, B., Jiang, C., Wang, Y. & Xu, T. Improving the water dissociation efficiency in a bipolar membrane with amino-functionalized MIL-101. J. Memb. Sci. 524, 370–376 (2017).

    Article  CAS  Google Scholar 

  141. Yan, Z. et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy Environ. Sci. 11, 2235–2245 (2018).

    Article  CAS  Google Scholar 

  142. Ge, Z. et al. High-performance bipolar membrane for electrochemical water electrolysis. J. Memb. Sci. 656, 120660 (2022).

    Article  CAS  Google Scholar 

  143. Hohenadel, A. et al. Electrochemical characterization of hydrocarbon bipolar membranes with varying junction morphology. ACS Appl. Energy Mater. 2, 6817–6824 (2019).

    Article  CAS  Google Scholar 

  144. Hohenadel, A., Gangrade, A. S. & Holdcroft, S. Spectroelectrochemical detection of water dissociation in bipolar membranes. ACS Appl. Mater. Interfaces 13, 46125–46133 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, B. S. et al. Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting. Small 16, 2002641 (2020).

    Article  CAS  Google Scholar 

  146. McDonald, M. B. & Freund, M. S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer. ACS Appl. Mater. Interfaces 6, 13790–13797 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is partially based on work performed within the Liquid Sunlight Alliance, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under award number DE-SC0021266 as well as the US Department of Energy under contract number DE-AC02-05CH11231. J.C.B. was supported in part by a fellowship award under contract FA9550-21-F-0003 through the National Defense Science and Engineering Graduate (NDSEG) fellowship program, sponsored by the Army Research Office (ARO). T.N.S. acknowledges funding from the National Science Foundation Graduate Research Fellowship (NSFGRFP) under grant number DGE 2146752. E.W.L. acknowledges funding from the National Science and Engineering Research Council of Canada (NSERC). S.W.B. and L.C. acknowledge support from the US Office of Naval Research, grant N00014-20-1-2517.

Author information

Authors and Affiliations

Authors

Contributions

J.C.B. and A.Z.W. supervised the project. J.C.B. conceived of the article, coordinated authors, and combined and unified author contributions. All authors contributed to discussing, commenting on, writing, and revising the manuscript.

Corresponding authors

Correspondence to Justin C. Bui or Adam Z. Weber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Gaohong He, Tongwen Xu and Nana Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, J.C., Lees, E.W., Marin, D.H. et al. Multi-scale physics of bipolar membranes in electrochemical processes. Nat Chem Eng 1, 45–60 (2024). https://doi.org/10.1038/s44286-023-00009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-023-00009-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing