Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation

Abstract

High-quality defect passivation at perovskite/charge extraction layer heterojunctions in perovskite solar cells is critical to solar device operation. Here we report a ‘physical’ passivation method by producing fixed charges with aluminium oxide (negative fixed charges) or silicon oxide (positive fixed charges) interlayers grown by atomic layer deposition at perovskite/charge extraction layer heterojunctions. Through experimental and modelling approaches, we find that the fixed charge passivation (FCP) modifies carrier concentration distribution near the heterojunctions, which reduces interface recombination and photovoltage losses. The strong acidity of aluminium oxide simultaneously shields perovskites from being deprotonated by the nickel oxide at high temperatures. The optimized FCP device shows an efficiency of 22.5% with over 60 mV improvement in photovoltage in contrast to the control devices. Importantly, the encapsulated FCP devices, operated at the maximum power point, exhibit almost no efficiency loss after ageing under 1-sun illumination at 85 °C for 2,000 h in ambient air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device performance and carrier dynamics.
Fig. 2: Fixed charges at MOs/perovskite heterojunctions.
Fig. 3: Simulation analysis of fixed charge effects on device performance.
Fig. 4: Device characterizations and long-term stability test.

Similar content being viewed by others

Data availability

Data supporting the findings in the present work are available in the article and Supplementary Information. Source data are provided with this paper.

References

  1. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  Google Scholar 

  2. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  Google Scholar 

  3. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  Google Scholar 

  4. Thampy, S., Xu, W. & Hsu, J. W. P. Metal oxide-induced instability and its mitigation in halide perovskite solar cells. J. Phys. Chem. Lett. 12, 8495–8506 (2021).

    Article  Google Scholar 

  5. Boyd, C. C. et al. Overcoming redox reactions at perovskite–nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020).

    Article  Google Scholar 

  6. Jung, E. H. et al. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5, 2796–2801 (2020).

    Article  Google Scholar 

  7. Ji, J. et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states. iScience 23, 101013 (2020).

    Article  Google Scholar 

  8. Schutt, K. et al. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019).

    Article  Google Scholar 

  9. Hu, Y. et al. Modification of SnO2 with phosphorus-containing Lewis acid for high-performance planar perovskite solar cells with negligible hysteresis. Sol. RRL 6, 2100942 (2022).

    Article  Google Scholar 

  10. Zhu, X. et al. Inverted planar-heterojunction perovskite solar cells with high ultraviolet stability. Nano Energy 103, 107849 (2022).

    Article  Google Scholar 

  11. Dingemans, G. & Kessels, E. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 30, 040802 (2012).

  12. Yang, L. et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic-ions interface passivation. Adv. Mater. 34, 2201681 (2022).

    Article  Google Scholar 

  13. Zhumagali, S. et al. Linked nickel oxide–perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021).

    Article  Google Scholar 

  14. Zhang, J. et al. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12, 2103674 (2022).

    Article  MathSciNet  Google Scholar 

  15. Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. Self-assembled monolayers as interface-engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606 (2020).

    Article  Google Scholar 

  16. Al-Ashouri, A. et al. Monolithic perovskite-silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  Google Scholar 

  17. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  Google Scholar 

  18. Koushik, D. et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91–100 (2017).

    Article  Google Scholar 

  19. Wang, F. et al. Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater. 31, 2008052 (2021).

    Article  Google Scholar 

  20. Menzel, D. et al. Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022).

    Article  Google Scholar 

  21. Pawlik, M. et al. Electrical and chemical studies on Al2O3 passivation activation process. Energy Proc. 60, 85–89 (2014).

    Article  Google Scholar 

  22. Hoex, B., Gielis, J. J. H., van de Sanden, M. C. M. & Kessels, W. M. M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 104, 113703 (2008).

    Article  Google Scholar 

  23. Zhang, H. et al. Use of metal oxide-nanoparticle bandgap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–4368 (2012).

    Article  Google Scholar 

  24. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  Google Scholar 

  25. Hoex, B., Schmidt, J., Pohl, P., van de Sanden, M. C. M. & Kessels, W. M. M. Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008).

    Article  Google Scholar 

  26. Cunha, J. M. V. et al. Perovskite metal oxide-semiconductor structures for interface characterization. Adv. Mater. Interfaces 8, 2170113 (2021).

    Article  Google Scholar 

  27. Winter, R., Ahn, J., McIntyre, P. C. & Eizenberg, M. New method for determining flat-band voltage in high mobility semiconductors. J. Vac. Sci. Technol. B 31, 030604 (2013).

    Article  Google Scholar 

  28. Vais, A. et al. Impact of starting measurement voltage relative to flat-band voltage position on the capacitance-voltage hysteresis and on the defect characterization of InGaAs-high-k metal oxide-semiconductor stacks. Appl. Phys. Lett. 107, 223504 (2015).

    Article  Google Scholar 

  29. Fowkes, F. M. & Hess, D. W. Control of fixed charge at Si-SiO2 interface by oxidation-reduction treatments. Appl. Phys. Lett. 22, 377–379 (1973).

    Article  Google Scholar 

  30. Dicks, O. A., Cottom, J., Shluger, A. L. & Afanas’Ev, V. V. The origin of negative charging in amorphous Al2O3 films: the role of native defects. Nanotechnology 30, 205201 (2019).

    Article  Google Scholar 

  31. Barth, C. et al. AFM tip characterization by Kelvin probe force microscopy. N. J. Phys. 12, 093024 (2010).

    Article  Google Scholar 

  32. Somoza, A. M. & Palacios-Lidón, E. Localized charges in thin films by Kelvin probe force microscopy: from single to multiple charges. Phys. Rev. B 101, 75432 (2020).

    Article  Google Scholar 

  33. Enevoldsen, G. H., Glatzel, T., Christensen, M. C., Lauritsen, J. V. & Besenbacher, F. Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface. Phys. Rev. Lett. 100, 236104 (2008).

    Article  Google Scholar 

  34. Liu, D., Clark, S. J. & Robertson, J. Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 032905 (2010).

    Article  Google Scholar 

  35. Werner, F. et al. Electronic and chemical properties of the c-Si/Al2O3 interface. J. Appl. Phys. 109, 113701 (2011).

    Article  Google Scholar 

  36. Vyas, H. P., Kirchner, G. D. & Lee, S. J. Fixed charge density (Qss) at the Si–SiO2 interface for thin oxides. J. Electrochem. Soc. 129, 1757–1760 (1982).

    Article  Google Scholar 

  37. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article  Google Scholar 

  38. Kotipalli, R. et al. Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1D model. Solar Energy 157, 603–613 (2017).

  39. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  Google Scholar 

  40. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  Google Scholar 

  41. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022).

    Article  Google Scholar 

  42. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  43. Almora, O. et al. Device performance of emerging photovoltaic materials (Version 1). Adv. Energy Mater. 11, 2002774 (2021).

    Article  Google Scholar 

  44. Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Thermal degradation of formamidinium-based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry–mass spectrometry analysis. J. Mater. Chem. A 7, 16912–16919 (2019).

    Article  Google Scholar 

  45. Latini, A., Gigli, G. & Ciccioli, A. A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH3NH3PbI3: an attempt to rationalise contradictory experimental results. Sustain. Energy Fuels 1, 1351–1357 (2017).

    Article  Google Scholar 

  46. Ma, L. et al. Temperature-dependent thermal decomposition pathway of organic–inorganic halide perovskite materials. Chem. Mater. 31, 8515–8522 (2019).

    Article  Google Scholar 

  47. Shi, L. et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020).

    Article  Google Scholar 

  48. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  Google Scholar 

  49. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  Google Scholar 

  50. Li, R. et al. Pseudohalide additives enhanced perovskite photodetectors. Adv. Opt. Mater. 9, 2001587 (2021).

    Article  Google Scholar 

  51. Chen, H. et al. Efficient and stable inverted perovskite solar cells incorporating secondary amines. Adv. Mater. 31, 1903559 (2019).

    Article  Google Scholar 

  52. You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  Google Scholar 

  53. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

  54. Zhang, F. et al. Metastable Dion–Jacobson 2D structure enables efficient and stable 62perovskite solar cells. Science 375, 71–76 (2022).

  55. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

  56. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

  57. Bi, D. et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018).

  58. Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

  59. Arora, N. et al. Perovskite solar cells with CuSCN hole-extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

  60. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

  61. Zhang, C. et al. Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021).

  62. Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat Photon. 15, 681–689 (2021).

  63. Zhao, Y. et al. A bilayer conducting-polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2021).

  64. Fan, H. et al. Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nat. Commun. 11, 5402 (2020).

  65. Yang, S. et al. Stabilizing halide–perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

  66. Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).

  67. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

  68. Xue, D. J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

  69. Zhang, H. et al. Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021).

  70. Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2020).

  71. Jang, Y. W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

  72. Zhao, Y. et al. Suppressing ion migration in metal-halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

  73. McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2022).

  74. Wang, T. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232 (2022).

  75. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

  76. Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

  77. Wu, S. et al. 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).

  78. Seo, S. et al. Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈500 h) stability at 85 °C under continuous 1 sun Illumination in Ambient Air. Adv. Mater. 30, 1801010 (2018).

  79. Wang, L. et al. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (number 62074115) and the Special Fund of Hubei Luojia Laboratory (number 220100023). We thank P. Fang for helpful discussion. We thank the Core Facility of Wuhan University for assisting with the KPFM and SEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., S.C. and Z.W. conceived the idea. Y.Y. designed and conducted most of the experiments. S.C. performed the simulations and data analysis. Y.Y. and S.C. performed most measurements and analysed the data under the supervision of Z.W. X.Z. assisted with device optimization. S.L. and Z.Z. fabricated the wide-bandgap devices. K.Z. performed the mass spectrometry measurement under the supervision of N.Y. L.J. assisted with ALD under the supervision of C.L. Y.L. performed XPS measurements. R.L. performed double-injection current measurement under the supervision of Q.L. Z.W. supervised the whole project. Y.Y., S.C. and Z.W. wrote the first draft of the paper. All the authors contributed to the revision of the paper.

Corresponding author

Correspondence to Zhiping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Notes 1–5 and Tables 1–14.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Fig. 21.

Source data

Source Data Fig. 1b

Statistical source data for Fig. 1b.

Source Data Fig. 4d

Statistical source data for Fig. 4d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cheng, S., Zhu, X. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat Energy 9, 37–46 (2024). https://doi.org/10.1038/s41560-023-01377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01377-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing