Abstract
Methane activation and utilization are among the major challenges of modern science. Methane is potentially an important feedstock for manufacturing value-added fuels and chemicals. However, most known processes require excessive operating temperatures and exhibit insufficient selectivity. Here, we demonstrate a photochemical looping strategy for highly selective stoichiometric conversion of methane to ethane at ambient temperature over silver–heteropolyacid–titania nanocomposites. The process involves a stoichiometric reaction of methane with highly dispersed cationic silver under illumination, which results in the formation of methyl radicals. Recombination of the generated methyl radicals leads to the selective, and almost quantitative, formation of ethane. Cationic silver species are simultaneously reduced to metallic silver. The silver–heteropolyacid–titania nanocomposites can be reversibly regenerated in air under illumination at ambient temperature. The photochemical looping process achieves a methane coupling selectivity of over 90%, a quantitative yield of ethane of over 9%, high quantum efficiency (3.5% at 362 nm) and excellent stability.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage
Nature Communications Open Access 30 August 2022
-
Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light
Nature Communications Open Access 25 May 2022
-
High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2
Nature Communications Open Access 19 May 2022
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The authors declare that the data supporting the findings of this study are available within the paper, Supplementary Information and Source Data files.
References
McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).
Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Energ. Environ. Sci. 7, 2580–2591 (2014).
Taarning, E. et al. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energ. Environ. Sci. 4, 793–804 (2011).
Dapsens, P. Y., Mondelli, C. & Pérez-Ramírez, J. Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catal. 2, 1487–1499 (2012).
Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O. & Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energ. Environ. Sci. 6, 3112–3135 (2013).
Kondratenko, E. V. et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 7, 366–381 (2017).
Kaygusuz, K. Global energy issues, climate change and wind power for clean and sustainable energy development. J. Eng. Res. Appl. Sci. 4, 317–327 (2015).
Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).
Hammond, C., Conrad, S. & Hermans, I. Oxidative methane upgrading. ChemSusChem 5, 1668–1686 (2012).
Choudhary, T. V. & Choudhary, V. R. Energy‐efficient syngas production through catalytic oxy‐methane reforming reactions. Angew. Chem. Int. Ed. 47, 1828–1847 (2008).
Song, H., Meng, X. G., Wang, Z. J., Liu, H. M. & Ye, J. H. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).
Jang, W. J., Shim, J. O., Kim, H. M., Yoo, S. Y. & Roh, H. S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 324, 15–26 (2019).
Lunsford, J. H. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 63, 165–174 (2000).
Webb, J. R., Bolaño, T. & Gunnoe, T. B. Catalytic oxy‐functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. ChemSusChem 4, 37–49 (2011).
Wang, B., Albarracín-Suazo, S., Pagán-Torres, Y. & Nikolla, E. Advances in methane conversion processes. Catal. Today 285, 147–158 (2017).
Keller, G. & Bhasin, M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73, 9–19 (1982).
Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high‐performance catalysts. ChemCatChem 3, 1935–1947 (2011).
Stansch, Z., Mleczko, L. & Baerns, M. Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst. Ind. Eng. Chem. Res. 36, 2568–2579 (1997).
Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. 34, 970–980 (1995).
Kondratenko, E.V. & Baerns, M. in Handbook of Heterogeneous Catalysis 2nd edn, Vol. 6 (eds Ertl, G. et al.) 3010–3023 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).
Kuo, J., Kresge, C. & Palermo, R. Evaluation of direct methane conversion to higher hydrocarbons and oxygenates. Catal. Today 4, 463–470 (1989).
Kanai, M. Photocatalytic upgrading of natural gas. Science 361, 647–648 (2018).
Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).
Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Highly dispersed Ce (III) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. Chem. Commun. 38, 4824–4826 (2005).
Yuliati, L., Tsubota, M., Satsuma, A., Itoh, H. & Yoshida, H. Photoactive sites on pure silica materials for nonoxidative direct methane coupling. J. Catal. 238, 214–220 (2006).
Yuliati, L., Hattori, T., Itoh, H. & Yoshida, H. Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J. Catal. 257, 396–402 (2008).
Li, L. et al. Efficient sunlight‐driven dehydrogenative coupling of methane to ethane over a Zn+‐modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011).
Li, L. et al. Synergistic effect on the photoactivation of the methane C-H bond over Ga3+‐modified ETS‐10. Angew. Chem. Int. Ed. 51, 4702–4706 (2012).
Meng, L. S. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energ. Environ. Sci. 11, 294–298 (2018).
Wu, S. Q. et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019).
Yu, L., Shao, Y. & Li, L. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 204, 216–223 (2017).
Yu, L. & Li, D. Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2. Catal. Sci. Techn. 7, 635–640 (2017).
Amano, F. et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 4, 502–507 (2019).
Yu, X., de Waele, V., Löfberg, A., Ordomsky, V. & Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019).
Yoshida, H. et al. Active Ag species in MFI zeolite for direct methane conversion in the light and dark. Res. Chem. Intermed. 29, 897–910 (2003).
Ozin, G. A. & Hugues, F. Selective photoactivation of carbon-hydrogen bonds in paraffinic hydrocarbons. Dimerization of alkanes. J. Phys. Chem. 86, 5174–5179 (1982).
Wang, H. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).
Sun, Z., Zhang, Y., Li, N., Xu, L. & Wang, T. Enhanced photoconductivity of a polyoxometalate–TiO2 composite for gas sensing applications. J. Mater. Chem. C. 3, 6153–6157 (2015).
Meng, P. et al. Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst. Appl. Catal. B 226, 487–498 (2018).
Tran, P. D., Wong, L. H., Barberbcd, J. & Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918 (2002).
Yu, X., Moldovan, S., Ordomsky, V. V. & Khodakov, A. Y. Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature. Nanoscale Adv. 1, 4321–4330 (2019).
Gondal, M., Hameed, A., Yamani, Z. & Arfaj, A. Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem. Phys. Lett. 392, 372–377 (2004).
Murcia-López, S. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 7, 2878–2885 (2017).
Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).
Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L. & Iglesia, E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).
Weber, R. S. Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J. Catal. 151, 470–474 (1995).
Nakarada, Ð. & Petković, M. Mechanistic insights on how hydroquinone disarms OH and OOH radicals. Int. J. Quantum Chem. 118, e25496 (2018).
Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H. & Sangiliyandi, G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 62, 4411–4413 (2008).
Prieto, P. et al. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 8807–8813 (2012).
Gaarenstroom, S. & Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 67, 3500–3506 (1977).
Anthony, M. & Seah, M. XPS: energy calibration of electron spectrometers. 1—An absolute, traceable energy calibration and the provision of atomic reference line energies. Surf. Interface Anal. 6, 95–106 (1984).
Samokhvalov, A., Nair, S., Duin, E. C. & Tatarchuk, B. J. Surface characterization of Ag/titania adsorbents. Appl. Surf. Sci. 256, 3647–3652 (2010).
Fernández, A. & González-Elipe, A. In situ XPS study of the photoassisted reduction of noble-metal cations on TiO2. Appl. Surf. Sci. 69, 285–289 (1993).
Parry, E. P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963).
Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. & Luis, F. Progress in chemical-looping combustion and reforming technologies. Prog. Energ. Combust. Sci. 38, 215–282 (2012).
Bhavsar, S., Najera, M., Solunke, R. & Veser, G. Chemical looping: to combustion and beyond. Catal. Today 228, 96–105 (2014).
Vorrias, I. et al. Calcium looping for CO2 capture from a lignite fired power plant. Fuel 113, 826–836 (2013).
Galvita, V. V., Poelman, H. & Marin, G. B. Combined chemical looping for energy storage and conversion. J. Power Sources 286, 362–370 (2015).
Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354, 449–452 (2016).
Zhang, J., Haribal, V. & Li, F. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme. Sci. Adv. 3, e1701184 (2017).
Acknowledgements
We thank L. Burylo, P. Simon and M. Frère for help with X-ray diffraction and XPS measurements. X.Y. and D.H thank the Chinese scholarship council for providing stipends for their PhD studies in France. We thank Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Hauts-de-France Region and FEDER for supporting and partially funding this work. GENESIS is supported by the Région Haute-Normandie, Métropole Rouen Normandie, CNRS via LABEX EMC3 and French National Research Agency as a part of the programme 'Investissements d'avenir' with the reference ANR-11-EQPX-0020.
Author information
Authors and Affiliations
Contributions
X.Y., V.V.O. and A.Y.K. conceived the idea for this work. All authors contributed to the design of the experimental set-up and experimental procedures. X.Y. prepared the nanocomposite materials, collected the data and performed ex situ characterization. X.Y, D.W., V.L.Z. and V.V.O performed the infrared measurements. S.M. performed nanocomposite characterization using imaging techniques. V.L.Z., A.Y.K and X.Y. designed the capillary photoreactor and performed the high-conversion methane experiments. D.H. synthesized the silver salt of HPW and conducted additional experiments in order to address the reviewer comments. X.Y. and A.Y.K. wrote the draught, and all the authors worked on improving the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–16 and Table 1.
Source data
Source Data Fig. 1
Statistical source data
Source Data Fig. 5
Statistical source data
Rights and permissions
About this article
Cite this article
Yu, X., Zholobenko, V.L., Moldovan, S. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat Energy 5, 511–519 (2020). https://doi.org/10.1038/s41560-020-0616-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41560-020-0616-7
This article is cited by
-
Catalytic methane removal to mitigate its environmental effect
Science China Chemistry (2023)
-
Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage
Nature Communications (2022)
-
Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light
Nature Communications (2022)
-
Methane transformation by photocatalysis
Nature Reviews Materials (2022)
-
High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2
Nature Communications (2022)