Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrochemical upgrade of CO2 from amine capture solution

Abstract

CO2 capture technologies based on chemisorption present the potential to lower net emissions of CO2 into the atmosphere. The electrochemical upgrade of captured CO2 to value-added products would be particularly convenient. Here we find that this goal is curtailed when the adduct of the capture molecule with CO2 fails to place the CO2 sufficiently close to the site of the heterogeneous reaction. We investigate tailoring the electrochemical double layer to achieve the valorization of chemisorbed CO2 in an aqueous monoethanolamine electrolyte. We reveal, using electrochemical studies and in situ surface-enhanced Raman spectroscopy, that a smaller double layer distance correlates with improved activity for CO2 to CO from amine solutions. With the aid of an alkali cation and accelerated mass transport by system design—temperature and concentration—we demonstrate amine–CO2 conversion to CO with 72% Faradaic efficiency at 50 mA cm–2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The EDL in the case of MEA electrolyte.
Fig. 2: Proposed interfacial structure near the electrode surface.
Fig. 3: The EDL in the case of the MEA/KCl electrolyte.
Fig. 4: The EDL tailored using different cations.
Fig. 5: Electrochemical performances of captured CO2 electrolysis.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. 1.

    Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    Google Scholar 

  2. 2.

    Wang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114, 650–665 (2017).

    Google Scholar 

  3. 3.

    Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    Google Scholar 

  4. 4.

    Rheinhardt, J. H., Singh, P., Tarakeshwar, P. & Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017).

    Google Scholar 

  5. 5.

    Schmickler E. S. W. Electrochemical Electron Transfer: from Marcus Theory to Electrocatalysis (John Wiley and Sons, 2008).

  6. 6.

    Mizen, M. B. & Wrighton, M. S. Reductive addition of CO2 to 9,10‐phenanthrenequinone. J. Electrochem. Soc. 136, 941–946 (1989).

    Google Scholar 

  7. 7.

    Watkins, J. D. et al. Redox-mediated separation of carbon dioxide from flue gas. Energy Fuels 29, 7508–7515 (2015).

    Google Scholar 

  8. 8.

    Ranjan, R. et al. Reversible electrochemical trapping of carbon dioxide using 4,4′-bipyridine that does not require thermal activation. J. Phys. Chem. Lett. 6, 4943–4946 (2015).

    Google Scholar 

  9. 9.

    Singh, P. et al. Electrochemical capture and release of carbon dioxide using a disulfide–thiocarbonate redox cycle. J. Am. Chem. Soc. 139, 1033–1036 (2017).

    Google Scholar 

  10. 10.

    Appel, A. M., Newell, R., DuBois, D. L. & Rakowski DuBois, M. Concentration of carbon dioxide by electrochemically modulated complexation with a binuclear copper complex. Inorg. Chem. 44, 3046–3056 (2005).

  11. 11.

    Stern, M. C. & Hatton, T. A. Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration. RSC Adv. 4, 5906–5914 (2014).

    Google Scholar 

  12. 12.

    Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).

    Google Scholar 

  13. 13.

    Chen, L. et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium. ChemSusChem 10, 4109–4118 (2017).

    Google Scholar 

  14. 14.

    Khurram, A., He, M. & Gallant, B. M. Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry. Joule 2, 2649–2666 (2018).

    Google Scholar 

  15. 15.

    Khurram, A., Yan, L., Yin, Y., Zhao, L. & Gallant, B. M. Promoting amine-activated electrochemical CO2 conversion with alkali salts. J. Phys. Chem. C 123, 18222–18231 (2019).

    Google Scholar 

  16. 16.

    Li, Y. C. et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    Google Scholar 

  17. 17.

    Wang, H., Yuan, X. Z. & Li, H. PEM Fuel Cell Diagnostic Tools (Taylor and Francis, 2011).

  18. 18.

    Ruffo, R. et al. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim. Acta 108, 575–582 (2013).

    Google Scholar 

  19. 19.

    Mizuno, Y. et al. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochim. Acta 63, 139–145 (2012).

    Google Scholar 

  20. 20.

    Baggetto, L., Niessen, R. A. H. & Notten, P. H. L. On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces. Electrochim. Acta 54, 5937–5941 (2009).

    Google Scholar 

  21. 21.

    Singh, R. K., Kunimatsu, K., Miyatake, K. & Tsuneda, T. Experimental and theoretical infrared spectroscopic study on hydrated Nafion membrane. Macromolecules 49, 6621–6629 (2016).

    Google Scholar 

  22. 22.

    Zeng, J., Jean, D.-I., Ji, C. & Zou, S. In situ surface-enhanced Raman spectroscopic studies of Nafion adsorption on Au and Pt electrodes. Langmuir 28, 957–964 (2012).

    Google Scholar 

  23. 23.

    Batista de Carvalho, L. A. E. & Teixeira-Dias, J. J. C. Raman spectra, conformational stability and normal coordinate analysis of ethylmethylamine. J. Raman Spectrosc. 26, 653–661 (1995).

    Google Scholar 

  24. 24.

    Long, D. A. Infrared and Raman characteristic group frequencies. J. Raman Spectrosc. 35, 905–905 (2004).

    Google Scholar 

  25. 25.

    Larkin P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, 2011).

  26. 26.

    Tseng, C.-L., Chen, Y.-K., Wang, S.-H., Peng, Z.-W. & Lin, J.-L. 2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry, and its interaction with CO2. J. Phys. Chem. C. 114, 11835–11843 (2010).

    Google Scholar 

  27. 27.

    Geddes, A. L. & Bottger, G. L. Infrared spectra of silver-ammine complexes. Inorg. Chem. 8, 802–807 (1969).

    Google Scholar 

  28. 28.

    Miles, M. G. et al. Raman and infrared spectra of isosteric diammine and dimethyl complexes of heavy metals. Normal-coordinate analysis of (X3Y2) 2Z ions and molecules. Inorg. Chem. 7, 1721–1729 (1968).

    Google Scholar 

  29. 29.

    Plotzker, I. & Exarhos, G. Spectroscopic studies of ammonia reduction of amorphous AgPO3. J. Phys. Chem. 84, 3486–3486 (1980).

    Google Scholar 

  30. 30.

    Gunathunge, C. M., Ovalle, V. J. & Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 19, 30166–30172 (2017).

    Google Scholar 

  31. 31.

    Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Google Scholar 

  32. 32.

    Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2013).

    Google Scholar 

  33. 33.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Google Scholar 

  34. 34.

    Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Google Scholar 

  35. 35.

    McCrum, I. T., Hickner, M. A. & Janik, M. J. Quaternary ammonium cation specific adsorption on platinum electrodes: a combined experimental and density functional theory study. J. Electrochem. Soc. 165, F114–F121 (2018).

    Google Scholar 

  36. 36.

    Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Google Scholar 

  37. 37.

    Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    Google Scholar 

  38. 38.

    Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Google Scholar 

  39. 39.

    Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Google Scholar 

  40. 40.

    Chattopadhyay, A. & Boxer, S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 117, 1449–1450 (1995).

    Google Scholar 

  41. 41.

    Bagus, P. S., Nelin, C. J., Müller, W., Philpott, M. R. & Seki, H. Field-induced vibrational frequency shifts of CO and CN chemisorbed on Cu(100). Phys. Rev. Lett. 58, 559–562 (1987).

    Google Scholar 

  42. 42.

    Ge, A. et al. Interfacial structure and electric field probed by in situ electrochemical vibrational stark effect spectroscopy and computational modeling. J. Phys. Chem. C 121, 18674–18682 (2017).

    Google Scholar 

  43. 43.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley Textbooks, 2000).

  44. 44.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    Google Scholar 

  45. 45.

    Zhong, H., Fujii, K., Nakano, Y. & Jin, F. Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. J. Phys. Chem. C. 119, 55–61 (2015).

    Google Scholar 

  46. 46.

    Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).

    Google Scholar 

  47. 47.

    Rosen, J. et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 5, 4293–4299 (2015).

    Google Scholar 

  48. 48.

    Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Google Scholar 

  49. 49.

    Zhang, Y. et al. Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind. Eng. Chem. Res. 48, 9233–9246 (2009).

    Google Scholar 

  50. 50.

    Lv, B., Guo, B., Zhou, Z. & Jing, G. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ. Sci. Technol. 49, 10728–10735 (2015).

    Google Scholar 

  51. 51.

    Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Google Scholar 

  52. 52.

    Bhargava, S. S. et al. System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem 7, 2001–2011 (2020).

    Google Scholar 

  53. 53.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Google Scholar 

  54. 54.

    Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    Google Scholar 

  55. 55.

    Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Google Scholar 

  56. 56.

    Jeong, H.-Y. et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 7, 10651–10661 (2019).

    Google Scholar 

  57. 57.

    Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Google Scholar 

  58. 58.

    Dunwell, M., Wang, J., Yan, Y. & Xu, B. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces. Phys. Chem. Chem. Phys. 19, 971–975 (2017).

    Google Scholar 

  59. 59.

    Kudelski, A. & Pettinger, B. Fluctuations of surface-enhanced Raman spectra of CO adsorbed on gold substrates. Chem. Phys. Lett. 383, 76–79 (2004).

    Google Scholar 

  60. 60.

    Heyes, J., Dunwell, M. & Xu, B. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J. Phys. Chem. C 120, 17334–17341 (2016).

    Google Scholar 

  61. 61.

    Dederichs, F., Friedrich, K. A. & Daum, W. Sum-frequency vibrational spectroscopy of CO adsorption on Pt(111) and Pt(110) electrode surfaces in perchloric acid solution: effects of thin-layer electrolytes in spectroelectrochemistry. J. Phys. Chem. B 104, 6626–6632 (2000).

    Google Scholar 

  62. 62.

    Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    Google Scholar 

  63. 63.

    Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Ontario Research Fund and the Natural Sciences and Engineering Research Council (NSERC) of Canada. This research was supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3D1A1040689).

Author information

Affiliations

Authors

Contributions

G.L. and Y.C.L. contributed to all experimental works, data analysis and manuscript preparation. J.-Y.K. and Y.-C.J. contributed to electrochemical experiments and NMR analysis. T.P. conducted the gas chromatography mass spectrometry analysis with the labelled 13CO2. D.-H.N. and A.S.R. conducted catalyst characterization. F.L. and M.L. contributed to discussions of the mechanism. A.H.I. participated in discussion of the energy analysis. E.H.S. supervised this study.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Sichao Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–2, Figs. 1–20 and Tables 1–8.

Supplementary Data 1

Supplementary data for Supplementary Tables 1–5 and Supplementary Figs. 1, 3–7, 9–11 and 13–20.

Source data

Source Data Fig. 1

Numerical data for Fig. 1.

Source Data Fig. 3

Numerical data for Fig. 3.

Source Data Fig. 4

Numerical data for Fig. 4.

Source Data Fig. 5

Numerical data for Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Li, Y.C., Kim, JY. et al. Electrochemical upgrade of CO2 from amine capture solution. Nat Energy 6, 46–53 (2021). https://doi.org/10.1038/s41560-020-00735-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing