Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage

Abstract

Carbon dioxide capture technologies will be important for counteracting difficult-to-abate greenhouse gas emissions if humanity is to limit global warming to acceptable levels. Electrochemically mediated CO2 capture has emerged as a promising alternative to conventional amine scrubbing, offering a potentially cost effective, environmentally friendly and energy efficient approach. Here we report an electrochemical cell for CO2 capture based on pH swing cycles driven through proton-coupled electron transfer of a developed phenazine derivative, 2,2′-(phenazine-1,8-diyl)bis(ethane-1-sulfonate) (1,8-ESP), with high aqueous solubility (>1.35 M) over pH range 0.00–14.90. The system operates with a high capture capacity of 0.86–1.41 mol l−1, a low energetic cost of 36–55 kJ mol−1 and an extremely low capacity fade rate of <0.01% per day, depending on organic concentration. The system charge–discharge cycle provides an electrical energy storage function that could be run only for storage when called for by electricity market conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of CO2 capture–release and energy storage–delivery cycle associated with the cell charge and discharge process.
Fig. 2: Molecular property study and schematic of the CO2 capture/release system.
Fig. 3: A CO2 concentrating cycle using a 1,8-ESP-based flow cell.
Fig. 4: CO2 separation performance at different 1,8-ESP concentrations and current densities.
Fig. 5: Cycling performance of 0.1 M 1,8-ESP full cell.
Fig. 6: CO2 capture cells under different oxygen concentrations.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information file. Source data are provided with this paper.

References

  1. National Centers for Environmental Information State of the Climate: Global Climate Report for 2021 (NOAA, 2021).

  2. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2019).

  3. Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    Article  Google Scholar 

  4. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004).

    Article  Google Scholar 

  5. Wang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Proc. 114, 650–665 (2017).

    Article  Google Scholar 

  6. About CCUS (IEA, 2021); https://www.iea.org/reports/about-ccus

  7. Global Status of CCS 2022 (Global CCS Institute, 2022); https://www.globalccsinstitute.com/resources/global-status-of-ccs-2022/

  8. Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    Article  Google Scholar 

  9. Shi, X. et al. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020).

    Article  Google Scholar 

  10. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  11. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  Google Scholar 

  12. Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination 380, 93–99 (2016).

    Article  Google Scholar 

  13. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  Google Scholar 

  14. Rinberg, A., Bergman, A. M., Schrag, D. P. & Aziz, M. J. Alkalinity concentration swing for direct air capture of carbon dioxide. ChemSusChem 14, 4439–4453 (2021).

    Article  Google Scholar 

  15. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  Google Scholar 

  16. McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).

    Article  Google Scholar 

  17. Kang, J. S., Kim, S. & Hatton, T. A. Redox-responsive sorbents and mediators for electrochemically based CO2 capture. Curr. Opin. Green Sustain. Chem. 31, 100504 (2021).

    Article  Google Scholar 

  18. Muroyama, A. P., Pătru, A. & Gubler, L. Review—CO2 separation and transport via electrochemical methods. J. Electrochem. Soc. 167, 133504 (2020).

    Article  Google Scholar 

  19. de Lannoy, C.-F. et al. Indirect ocean capture of atmospheric CO2: part I. Prototype of a negative emissions technology. Int. J. Greenhouse Gas Control 70, 243–253 (2018).

    Article  Google Scholar 

  20. Rheinhardt, J. H., Singh, P., Tarakeshwar, P. & Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017).

    Article  Google Scholar 

  21. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  Google Scholar 

  22. Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy Environ. Sci. 13, 3706–3722 (2020).

    Article  Google Scholar 

  23. Jin, S., Wu, M., Jing, Y., Gordon, R. G. & Aziz, M. J. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nat. Commun. 13, 2140 (2022).

    Article  Google Scholar 

  24. Huang, C. et al. CO2 capture from flue gas using an electrochemically reversible hydroquinone/quinone solution. Energy Fuels 33, 3380–3389 (2019).

    Article  Google Scholar 

  25. Xie, H. et al. Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium. Appl. Energy 259, 114119 (2020).

    Article  Google Scholar 

  26. Xie, H. et al. Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier. Cell Rep. Phys. Sci. 1, 100046 (2020).

    Article  Google Scholar 

  27. Kwabi, D. G., Ji, Y. L. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020).

    Article  Google Scholar 

  28. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article  Google Scholar 

  29. Rahimi, M. et al. An electrochemically mediated amine regeneration process with a mixed absorbent for postcombustion CO2 capture. Environ. Sci. Technol. 54, 8999–9007 (2020).

    Article  Google Scholar 

  30. Salles, M. B. C., Gadotti, T. N., Aziz, M. J. & Hogan, W. W. Potential revenue and breakeven of energy storage systems in PJM energy markets. Environ. Sci. Pollut. Res. 28, 12357–12368 (2021).

    Article  Google Scholar 

  31. Kwabi, D. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894–1906 (2018).

    Article  Google Scholar 

  32. Jin, S. et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species. Adv. Energy Mater. 10, 2000100 (2020).

    Article  Google Scholar 

  33. Tiwari, S. P. et al. Foaming dependence on the interface affinities of surfactant-like molecules. Ind. Eng. Chem. Res. 58, 19877–19889 (2019).

    Article  Google Scholar 

  34. Diederichsen, K. M., Liu, Y., Ozbek, N., Seo, H. & Hatton, T. A. Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. Joule 6, 221–239 (2022).

    Article  Google Scholar 

  35. Goto, K., Kodama, S., Higashii, T. & Kitamura, H. Evaluation of amine-based solvent for post-combustion capture of carbon dioxide. J. Chem. Eng. Jpn 47, 663–665 (2014).

    Article  Google Scholar 

  36. House, K. Z., Harvey, C. F., Aziz, M. J. & Schrag, D. P. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ. Sci. 2, 193–205 (2009).

    Article  Google Scholar 

  37. Hitchcock, L. B. Rate of absorption of carbon dioxide effect of concentration and viscosity of caustic solutions. Ind. Eng. Chem. 26, 1158–1167 (1934).

    Article  Google Scholar 

  38. Hu, G. et al. Carbon dioxide absorption into promoted potassium carbonate solutions: a review. Int. J. Greenhouse Gas Control 53, 28–40 (2016).

    Article  Google Scholar 

  39. Pinsent, B. R. W., Pearson, L. & Roughton, F. J. W. The kinetics of combination of carbon dioxide with hydroxide ions. Trans. Faraday Soc. 52, 1512–1520 (1956).

    Article  Google Scholar 

  40. Ji, Y. et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).

    Article  Google Scholar 

  41. Pang, S., Wang, X., Wang, P. & Ji, Y. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH. Angew. Chem. Int. Ed. 60, 5289–5298 (2021).

    Article  Google Scholar 

  42. Xu, J., Pang, S., Wang, X., Wang, P. & Ji, Y. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 5, 2437–2449 (2021).

    Article  Google Scholar 

  43. Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  Google Scholar 

  44. Dell’Amico, L., Bonchio, M. & Companyó, X. Recent Advances in Electrochemical Carboxylation of Organic Compounds for CO2 Valorization. In CO2 as a Building Block in Organic Synthesis 225–252 (2020). (ed Shoubhik Das) (WILEY-VCH, 2020)

  45. Li, X., Zhao, X. H., Liu, Y. Y., Hatton, T. A. & Liu, Y. Y. Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nat. Energy 7, 1065–1075 (2022).

    Article  Google Scholar 

  46. Xie, W. et al. Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer 52, 2032–2043 (2011).

    Article  Google Scholar 

  47. Beh, E. S. et al. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639–644 (2017).

    Article  Google Scholar 

  48. Treimer, S., Tang, A. & Johnson, D. C. A consideration of the application of Koutecký–Levich plots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes. Electroanalysis 14, 165–171 (2002).

    Article  Google Scholar 

  49. Sakai, M. & Ohnaka, N. Kinetics of the second charge transfer step in an ee mechanism by rotating ring‐disk electrode voltammetry. J. Electrochem. Soc. 137, 576–579 (1990).

    Article  Google Scholar 

  50. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  52. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21 + G basis set for first-row elements, Li–F. J. Comput. Chem. 4, 294–301 (1983).

    Article  Google Scholar 

  53. Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  Google Scholar 

  54. van der Bondi, A. Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    Article  Google Scholar 

  55. Ho, J., Klamt, A. & Coote, M. L. Comment on the correct use of continuum solvent models. J. Phys. Chem. A 114, 13442–13444 (2010).

    Article  Google Scholar 

  56. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support received from the National Natural Science Foundation of China (22005249, 22101064) and Zhejiang Leading Innovative and Entrepreneur Team Introduction Program (2020R01004) is gratefully acknowledged. Research at Harvard University was supported by the Harvard University Climate Change Solutions Fund. We thank the Instrumentation and Service Center for Molecular Sciences (ISCMS) and HPC Center at Westlake University for the facility support and technical assistance. We thank D.P. Schrag, T. George, A. Rinberg, Y. Jing and A. Bergman for helpful discussions. We thank X. Lu, X. Shi, Y. Chen and K. Wang for data collection and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.W., Y.J., R.G.G. and M.J.A. formulated and supervised the project. S.P. and F.Y. synthesized the compounds. S.J., M.A. and D.X. performed the CO2 capture tests. S.P. performed the cell cycling tests. L.L. performed theoretical analysis. S.J., P.W., Y.J. and M.J.A. wrote the paper, and all authors contributed to revising the paper.

Corresponding authors

Correspondence to Pan Wang, Michael J. Aziz or Yunlong Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Yayuan Liu, Shrihari Sankarasubramanian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–5 and Notes 1 and 2.

Source data

Source Data Fig. 3

Source data for the CO2 concentrating cycle using a 1,8-ESP-based flow cell.

Source Data Fig. 4

Source data for CO2 separation performance at different 1,8-ESP concentrations and current densities.

Source Data Fig. 5

Source data for the cycling performance of 0.1 M 1,8-ESP full cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, S., Jin, S., Yang, F. et al. A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage. Nat Energy 8, 1126–1136 (2023). https://doi.org/10.1038/s41560-023-01347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01347-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing