Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities


A common practise in the research of Li–S batteries is to use high electrode porosity and excessive electrolytes to boost sulfur-specific capacity. Here we propose a class of dense intercalation-conversion hybrid cathodes by combining intercalation-type Mo6S8 with conversion-type sulfur to realize a Li–S full cell. The mechanically hard Mo6S8 with fast Li-ion transport ability, high electronic conductivity, active capacity contribution and high affinity for lithium polysulfides is shown to be an ideal backbone to immobilize the sulfur species and unlock their high gravimetric capacity. Cycling stability and rate capability are reported under realistic conditions of low carbon content (~10 wt%), low electrolyte/active material ratio (~1.2 µl mg−1), low cathode porosity (~55 vol%) and high mass loading (>10 mg cm−2). A pouch cell assembled based on the hybrid cathode and a 2× excess Li metal anode is able to simultaneously deliver a gravimetric energy density of 366 Wh kg−1 and a volumetric energy density of 581 Wh l−1.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design strategy for jointly high gravimetric–volumetric energy density.
Fig. 2: Characterizations of the HMSC and traditional C/S8 cathode.
Fig. 3: Investigation of the interaction between LixMo6S8 and LiPS.
Fig. 4: The roles of the Chevrel-phase Mo6S8 in the HMSC.
Fig. 5: Electrochemical performance of the Li|HMSC coin cell.
Fig. 6: The Eg and Ev of the Li|HMSC cell.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Liu, X., Huang, J. Q., Zhang, Q. & Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017).

    Article  Google Scholar 

  2. 2.

    Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article  Google Scholar 

  3. 3.

    Zhang, S., Zhao, K., Zhu, T. & Li, J. Electrochemomechanical segradation of high-capacity battery electrode materials. Prog. Mater. Sci. 89, 479–521 (2017).

    Article  Google Scholar 

  4. 4.

    Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J. & Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2016).

    Article  Google Scholar 

  5. 5.

    Xue, W. et al. Gravimetric and volumetric energy densities of lithium-sulfur batteries. Curr. Opin. Electrochem. 6, 92–99 (2017).

    Article  Google Scholar 

  6. 6.

    Fan, F. Y. et al. Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries. J. Electrochem. Soc. 163, A3111–A3116 (2016).

    Article  Google Scholar 

  7. 7.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  8. 8.

    Chen, J. et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

    Article  Google Scholar 

  9. 9.

    McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li-S and Li-ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015).

    Article  Google Scholar 

  10. 10.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  11. 11.

    Berg, E. J., Villevieille, C., Streich, D., Trabesinger, S. & Novák, P. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015).

    Article  Google Scholar 

  12. 12.

    Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325 (2011).

    Article  Google Scholar 

  13. 13.

    Xue, W. et al. Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy 38, 12–18 (2017).

    Article  Google Scholar 

  14. 14.

    Tao, X. et al. Strong sulfur binding with conducting Magneli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. Nano Lett. 14, 5288–5294 (2014).

    Article  Google Scholar 

  15. 15.

    Wei Seh, Z. et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

  16. 16.

    Liang, X. & Nazar, L. F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10, 4192–4198 (2016).

    Article  Google Scholar 

  17. 17.

    Li, Z., Zhang, J. & Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015).

    Article  Google Scholar 

  18. 18.

    Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article  Google Scholar 

  19. 19.

    Ma, L. et al. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. J. Mater. Chem. A 3, 19857–19866 (2015).

    Article  Google Scholar 

  20. 20.

    Su, Y.-S. & Manthiram, A. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries. J. Power Sources 270, 101–105 (2014).

    Article  Google Scholar 

  21. 21.

    Zhou, G. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl Acad. Sci. USA 114, 840–845 (2017).

    Article  Google Scholar 

  22. 22.

    Lin, Z., Liu, T. F., P., A. X. & Liang, C. D. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018).

    Article  Google Scholar 

  23. 23.

    Zhao, Q., Zheng, J. & Archer, L. Interphases in lithium-sulfur batteries: toward deployable devices with competitive energy density and stability. ACS Energy Lett. 3, 2104–2113 (2018).

    Article  Google Scholar 

  24. 24.

    Pan, H. et al. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018).

    Article  Google Scholar 

  25. 25.

    Wang, H. et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 8, 1800590 (2018).

    Article  Google Scholar 

  26. 26.

    Chung, S. H. & Manthiram, A. Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018).

    Article  Google Scholar 

  27. 27.

    Mao, Y. et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat. Commun. 8, 14628 (2017).

    Article  Google Scholar 

  28. 28.

    Chung, S.-H. & Manthiram, A. Designing lithium-sulfur cells with practically necessary parameters. Joule 2, 710–724 (2018).

    Article  Google Scholar 

  29. 29.

    Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article  Google Scholar 

  30. 30.

    Xu, G. et al. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 8, 3066–3074 (2015).

    Article  Google Scholar 

  31. 31.

    Wang, X. et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 9, 2533–2538 (2016).

    Article  Google Scholar 

  32. 32.

    Peng, H. J. et al. Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139, 8458 (2017).

    Article  Google Scholar 

  33. 33.

    Zhou, G. et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356–365 (2015).

    Article  Google Scholar 

  34. 34.

    Zhang, Q. et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015).

    Article  Google Scholar 

  35. 35.

    Yuan, Z. et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).

    Article  Google Scholar 

  36. 36.

    Zang, J. et al. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 8, 2663–2675 (2015).

    Article  Google Scholar 

  37. 37.

    Li, G. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018).

    Article  Google Scholar 

  38. 38.

    Pan, H. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2, 813 (2017).

    Article  Google Scholar 

  39. 39.

    Tan, G. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017).

    Article  Google Scholar 

  40. 40.

    Levi, M. D. et al. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 chevrel phase. J. Electrochem. Soc. 151, A1044 (2004).

    Article  Google Scholar 

  41. 41.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  42. 42.

    Mei, L. et al. Chevrel phase Mo6T8 (T = S, Se) as electrodes for advanced energy storage. Small 13, 1701441 (2017).

    Article  Google Scholar 

  43. 43.

    Saha, P. et al. A convenient approach to Mo6S8 chevrel phase cathode for rechargeable magnesium battery. J. Electrochem. Soc. 161, A593–A598 (2014).

    Article  Google Scholar 

  44. 44.

    Peng, H.-J., Huang, J.-Q., Cheng, X.-B. & Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).

    Article  Google Scholar 

  45. 45.

    Cañas, N. A., Fronczek, D. N., Wagner, N., Latz, A. & Friedrich, K. A. Experimental and theoretical analysis of products and reaction intermediates of lithium-sulfur batteries. J. Phys. Chem. C 118, 12106–12114 (2014).

    Article  Google Scholar 

  46. 46.

    Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29, 3375–3379 (2017).

    Article  Google Scholar 

  47. 47.

    Pope, M. A. & Aksay, I. A. Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5, 1500124 (2015).

    Article  Google Scholar 

  48. 48.

    Hagen, M. et al. Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).

    Article  Google Scholar 

  49. 49.

    Eroglu, D., Zavadil, K. R. & Gallagher, K. G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).

    Article  Google Scholar 

  50. 50.

    Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  52. 52.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  53. 53.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  54. 54.

    Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  55. 55.

    Wan, L. F., Perdue, B. R., Apblett, C. A. & Prendergast, D. Mg desolvation and intercalation mechanism at the Mo6S8 Chevrel phase surface. Chem. Mater. 27, 5932–5940 (2015).

    Article  Google Scholar 

  56. 56.

    Tarascon, J., DiSalvo, F., Murphy, D., Hull, G. & Waszczak, J. New superconducting ternary molybdenum chalcogenides in Mo6Se8, T1Mo6S8, and T1Mo6Se8. Phys. Rev. B 29, 172 (1984).

    Article  Google Scholar 

  57. 57.

    Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015).

    Article  Google Scholar 

Download references


We acknowledge the support by Samsung Advanced Institute of Technology, National Key Technologies R&D Program, China (grant no. 2018YFB0104400) and the National Natural Science Foundation of China (grant no. 51872322). We also acknowledge the valuable suggestions for experiments from L. Miao and the carbonaceous materials provided by B. Fugetsu at School of Engineering, The University of Tokyo. This work made use of the MRSEC Shared Experimental Facilities supported by the National Science Foundation under award no. DMR-1419807. L.S. acknowledges the One Hundred Talent Project of the Chinese Academy of Sciences and Thousand Talents Program for Young Scientists.

Author information




L.S., W.X. and J.L. conceived and designed the experiments. W.X., L.S. and C.W. fabricated the HMSC cathode. W.X., K.P.S., Y.C., L.Q., Z.Z. and G.X. carried out material characterization and electrochemical measurements. Z.S. carried out the DFT theoretical calculations. Z.W. and D.Y. carried out the TEM observation. H.W. and J.K. conducted the four-point-probe resistivity test. W.X., C.W. and A.M. made the pouch cell. W.X., L.S., J.L. and Z.S. wrote the paper. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Liumin Suo or Ju Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–25, Supplementary Note 1, Supplementary Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Shi, Z., Suo, L. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat Energy 4, 374–382 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing