Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Marine fishes experiencing high-velocity range shifts may not be climate change winners

Abstract

Climate change is driving the global redistribution of species. A common assumption is that rapid range shifts occur in tandem with overall stable or positive abundance trends throughout the range and thus these species may be considered as climate change ‘winners’. However, although establishing the link between range shift velocities and population trends is crucial for predicting climate change impacts it has not been empirically tested. Using 2,572 estimates of changes in marine fish abundance spread across the world’s oceans, we show that poleward range shifts are not necessarily associated with positive population trends. Species experiencing high-velocity range shifts seem to experience local population declines irrespective of the position throughout the species range. High range shift velocities of 17 km yr−1 are associated with a 50% decrease in population sizes over a period of 10 yr, which is dramatic compared to the overall stable population trends in non-shifting species. This pattern, however, mostly occurs in populations located in the poleward, colder, portion of the species range. The lack of a positive association between poleward range shift velocities and population trends at the coldest portion of the range contrasts with the view that rapid range shifts safeguard against local population declines. Instead, our work suggests that marine fishes experiencing rapid range shifts could be more vulnerable to climatic change and therefore should be carefully assessed for conservation status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relationship between population abundance trends and range shift velocities for populations at different spatial positions under the ‘march’ scenario.
Fig. 2: The effect of range shift velocities on population trends.
Fig. 3: Accounting for the spatial and thermal positions of populations.
Fig. 4: Suggested poleward-skewed abundance distributions consistent with our empirical findings.

Similar content being viewed by others

Data availability

Data are freely available from the BioTIME22 and BioShifts17 databases.

Code availability

The code used in this work is available at https://doi.org/10.6084/m9.figshare.25006787.

References

  1. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental-scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. 27, 3200–3217 (2021).

    Article  Google Scholar 

  5. Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    Article  CAS  ADS  Google Scholar 

  6. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article  PubMed  Google Scholar 

  8. Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    Article  PubMed  Google Scholar 

  9. Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  Google Scholar 

  11. Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article  ADS  Google Scholar 

  12. Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).

    Article  Google Scholar 

  13. Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    Article  PubMed  Google Scholar 

  14. Pulido, F. et al. Widespread latitudinal asymmetry in the performance of marginal populations: a meta‐analysis. Glob. Ecol. Biogeogr. 32, 842–854 (2023).

    Article  Google Scholar 

  15. Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Edgar, G. J. et al. Continent-wide declines in shallow reef life over a decade of ocean warming. Nature 615, 858–865 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Comte, L. et al. BioShifts: a global geodatabase of climate-induced species redistribution over land and sea. Figshare https://doi.org/10.6084/m9.figshare.7413365.v1 (2020).

  18. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. 37, 672–682 (2022).

    Article  PubMed  Google Scholar 

  21. Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).

    Article  PubMed  Google Scholar 

  22. Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).

    Article  ADS  Google Scholar 

  24. Fredston, A. et al. Range edges of North American marine species are tracking temperature over decades. Glob. Change Biol. 27, 3145–3156 (2021).

    Article  Google Scholar 

  25. Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    Article  ADS  Google Scholar 

  27. Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: the northward range expansion of tropical organisms in response to warming winter temperatures. Glob. Change Biol. 27, 3009–3034 (2021).

    Article  Google Scholar 

  28. Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35, 781–791 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Fenberg, P. B. & Rivadeneira, M. M. Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J. Biogeogr. 38, 2286–2298 (2011).

    Article  Google Scholar 

  30. Maggini, R. et al. Are Swiss birds tracking climate change? Ecol. Model. 222, 21–32 (2011).

    Article  Google Scholar 

  31. Fristoe, T. S., Vilela, B., Brown, J. H. & Botero, C. A. Abundant‐core thinking clarifies exceptions to the abundant‐center distribution pattern. Ecography 2023, e06365 (2023).

  32. Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yancovitch Shalom, H. et al. A closer examination of the ‘abundant centre’ hypothesis for reef fishes. J. Biogeogr. 47, 2194–2209 (2020).

    Article  Google Scholar 

  34. Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).

    Article  ADS  Google Scholar 

  35. Dallas, T., Decker, R. R. & Hastings, A. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20, 1526–1533 (2017).

    Article  PubMed  Google Scholar 

  36. Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    Article  ADS  Google Scholar 

  37. Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).

    Article  Google Scholar 

  38. Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Hutchings, J. A. & Myers, R. A. What can be learned from the collapse of a renewable resource? Atlantic Cod,Gadus morhua, of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci. 51, 2126–2146 (1994).

    Article  Google Scholar 

  40. Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).

    Article  ADS  Google Scholar 

  42. Garcia-Soto, C. et al. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean ph, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (atlantic meridional overturning circulation). Front. Mar. Sci. 8, 642372 (2021).

  43. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

  44. Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    Article  ADS  Google Scholar 

  45. Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article  Google Scholar 

  47. Chaikin, S., Dubiner, S. & Belmaker, J. Cold‐water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022).

    Article  Google Scholar 

  48. Harley, S. J., Myers, R. A. & Dunn, A. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58, 1760–1772 (2001).

    Article  Google Scholar 

  49. Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.0 (2022).

  50. Occurrence Download (GBIF, 2021); https://doi.org/10.15468/dl.p4ptpe

  51. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  52. Hijmans, R. J. Geosphere: Spherical trigonometry. R package version 1.5.7 (2018).

  53. Froese, R. & Pauly, D. (eds) FishBase (date accessed October 1, 2022); https://www.fishbase.us/

  54. Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article  Google Scholar 

  55. Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article  Google Scholar 

  56. Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F., & De Clerck, O. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Divers. Distrib. 24, 144–157 (2018).

    Article  Google Scholar 

  57. Givan, O., Edelist, D., Sonin, O. & Belmaker, J. Thermal affinity as the dominant factor changing Mediterranean fish abundances. Glob. Change Biol. 24, e80–e89 (2018).

    Article  ADS  Google Scholar 

  58. Cheung, W. W. L., Pitcher, T. J. & Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserv. 124, 97–111 (2005).

    Article  Google Scholar 

  59. Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Collen, B. et al. Monitoring change in vertebrate abundance: the living planet index. Conserv. Biol. 23, 317–327 (2009).

    Article  PubMed  Google Scholar 

  61. Bolker, B. M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  62. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  63. Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    Article  ADS  Google Scholar 

  64. Barton, K. MuMIn. R package version 1.47.5 (2023).

  65. Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 379–550 (2022).

  66. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  ADS  Google Scholar 

  67. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002).

Download references

Acknowledgements

This work was supported by funding from the Quebec Center for Biodiversity Science (QCBS) awarded to J.P.L. and K.E.M. We thank members of the QCBS working group on range edge dynamics and expansion for insightful discussions and in particular, B. Leung for advising on statistical analyses at the early stages of the project. The research has been carried out under the ACTNOW research project (European Commission grant agreement no. 101060072). We are grateful to the BioTIME and BioShifts data curators and their teams for compiling and extracting extensive datasets and enabling the investigation of global biodiversity patterns.

Author information

Authors and Affiliations

Authors

Contributions

S.C., J.B., J.P.L. and F.R. conceived and planned the study. S.C., J.P.L. and J.B. led the writing. S.C., F.R. and J.B. designed the analyses. F.R. and S.C. prepared the data. S.C. performed all analyses and made the figures. J.B. supervised this study. J.P.L., K.E.M. and J.B. contributed financially. All authors commented on and edited the manuscript drafts and contributed importantly to the development of this study. All authors contributed to revisions and consented to the manuscript being submitted in its final form.

Corresponding author

Correspondence to Shahar Chaikin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jonathan Lenoir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–3.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikin, S., Riva, F., Marshall, K.E. et al. Marine fishes experiencing high-velocity range shifts may not be climate change winners. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02350-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing