Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Species better track climate warming in the oceans than on land

Abstract

There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts—a global geo-database of 30,534 range shifts. Despite a spatial imbalance towards the most developed regions of the Northern Hemisphere and a taxonomic bias towards the most charismatic animals and plants of the planet, data show that marine species are better at tracking isotherm shifts, and move towards the pole six times faster than terrestrial species. More specifically, we find that marine species closely track shifting isotherms in warm and relatively undisturbed waters (for example, the Central Pacific Basin) or in cold waters subject to high human pressures (for example, the North Sea). On land, human activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with some species shifting in the opposite direction to isotherms. Along elevational gradients, species follow the direction of isotherm shifts but at a pace that is much slower than expected, especially in areas with warm climates. Our results suggest that terrestrial species are lagging behind shifting isotherms more than marine species, which is probably related to the interplay between the wider thermal safety margin of terrestrial versus marine species and the more constrained physical environment for dispersal in terrestrial versus marine habitats.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Taxonomic coverage.
Fig. 2: Sources of variation in species range shifts.
Fig. 3: Mean velocity of species range shifts per taxonomic class.
Fig. 4: Degree of coupling between species range shifts and isotherm shifts.
Fig. 5: Main determinants of the velocity of species range shifts.
Fig. 6: Maps of the degree of coupling between species range shifts and isotherm shifts.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the BioShifts geo-database in the Figshare digital repository13 available at https://doi.org/10.6084/m9.figshare.7413365.v1.

Code availability

R scripts used in the analyses are available at https://doi.org/10.6084/m9.figshare.7413365.v1.

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  PubMed  Google Scholar 

  2. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  PubMed  Google Scholar 

  3. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  4. Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Google Scholar 

  5. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Google Scholar 

  6. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  PubMed  Google Scholar 

  7. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  PubMed  Google Scholar 

  8. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  PubMed  Google Scholar 

  9. Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS  PubMed  Google Scholar 

  10. Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Google Scholar 

  11. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS  PubMed  Google Scholar 

  12. Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).

    Google Scholar 

  13. Comte, L. et al. BioShifts: a global geo-database of climate-induced species redistribution over land and sea. Figshare https://doi.org/10.6084/m9.figshare.7413365.v1 (2020).

  14. Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).

    Google Scholar 

  15. Feeley, K. J., Stroud, J. T. & Perez, T. M. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).

    Google Scholar 

  16. Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H. & Frierson, D. M. W. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013).

    Google Scholar 

  17. Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).

    Google Scholar 

  18. Freeman, B. G., Lee‐Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Google Scholar 

  19. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  PubMed  Google Scholar 

  20. Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

    Google Scholar 

  22. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Google Scholar 

  23. Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    PubMed  Google Scholar 

  24. Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    CAS  PubMed  Google Scholar 

  27. Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2483 (2014).

    Google Scholar 

  28. Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Kjesbu, O. S. et al. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proc. Natl Acad. Sci. USA 111, 3478–3483 (2014).

    CAS  PubMed  Google Scholar 

  30. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS  PubMed  Google Scholar 

  31. Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    CAS  PubMed  Google Scholar 

  32. Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Google Scholar 

  33. HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. NY Acad. Sci. 1297, 112–125 (2013).

    PubMed  Google Scholar 

  34. Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).

    Google Scholar 

  35. Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Google Scholar 

  36. Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).

    Google Scholar 

  37. Vergés, A. et al. Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).

    Google Scholar 

  38. Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    PubMed  Google Scholar 

  39. Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  40. Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    Google Scholar 

  42. Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Frimpong, E. A. & Angermeier, P. L. Fish Traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34, 487–495 (2009).

    Google Scholar 

  44. Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Google Scholar 

  45. Agnihotri, P. et al. Climate change-driven shifts in elevation and ecophysiological traits of Himalayan plants during the past century. Curr. Sci. 112, 595 (2017).

    CAS  Google Scholar 

  46. Aguirre-Gutiérrez, J., Kissling, W. D. & Carvalheiro, L. G. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 24451 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Akatov, P. V. Changes in the upper limits of tree species distribution in the Western Caucasus (Belaya River basin) related to recent climate warming. Russ. J. Ecol. 40, 33–38 (2009).

    Google Scholar 

  48. Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

    Google Scholar 

  49. Amano, T. et al. Links between plant species’ spatial and temporal responses to a warming climate. Proc. R. Soc. Lond. B Biol. Sci. 281, 20133017 (2014).

    Google Scholar 

  50. Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).

    Google Scholar 

  51. Angelo, C. L. & Daehler, C. C. Upward expansion of fire-adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    Google Scholar 

  52. Archaux, F. Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146, 138–144 (2004).

    Google Scholar 

  53. Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).

    Google Scholar 

  54. Asher, J., Fox, R. & Warren, M. S. British butterfly distributions and the 2010 target. J. Insect Conserv. 15, 291–299 (2011).

    Google Scholar 

  55. Assandri, G. & Morganti, M. Is the spectacled warbler Sylvia conspicillata expanding northward because of climate warming? Bird Study 62, 126–131 (2015).

    Google Scholar 

  56. Auer, S. K. & King, D. I. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 23, 867–875 (2014).

    Google Scholar 

  57. Bässler, C., Hothorn, T., Brandl, R. & Müller, J. Insects overshoot the expected upslope shift caused by climate warming. PLoS ONE 8, e65842 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Batdorf, K. E. Distributional Changes in Ohio’s Breeding Birds and the Importance of Climate and Land Cover Change. MSc thesis, Ohio State Univ. (2012).

  59. Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    Google Scholar 

  60. Baur, B. & Baur, A. Snails keep the pace: shift in upper elevation limit on mountain slopes as a response to climate warming. Can. J. Zool. 91, 596–599 (2013).

    Google Scholar 

  61. Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15, 1790–1803 (2009).

    Google Scholar 

  62. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Google Scholar 

  63. Beever, E. A., Ray, C., Wilkening, J. L., Brussard, P. F. & Mote, P. W. Contemporary climate change alters the pace and drivers of extinction. Glob. Change Biol. 17, 2054–2070 (2011).

    Google Scholar 

  64. Bergamini, A., Ungricht, S. & Hofmann, H. An elevational shift of cryophilous bryophytes in the last century—an effect of climate warming? Divers. Distrib. 15, 871–879 (2009).

    Google Scholar 

  65. Berke, S. K. et al. Range shifts and species diversity in marine ecosystem engineers: patterns and predictions for European sedimentary habitats. Glob. Ecol. Biogeogr. 19, 223–232 (2010).

    Google Scholar 

  66. Betzholtz, P., Pettersson, L. B., Ryrholm, N. & Franzen, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. R. Soc. B Biol. Sci. 280, 20122305 (2012).

    Google Scholar 

  67. Bhatta, K. P., Grytnes, J.-A. & Vetaas, O. R. Downhill shift of alpine plant assemblages under contemporary climate and land-use changes. Ecosphere 9, e02084 (2018).

    Google Scholar 

  68. Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).

    Google Scholar 

  69. Bodin, J. et al. Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? J. Veg. Sci. 24, 269–283 (2013).

    Google Scholar 

  70. Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, art83 (2014).

    Google Scholar 

  71. Botts, E. A., Erasmus, B. F. N. & Alexander, G. J. Observed range dynamics of South African amphibians under conditions of global change. Austral Ecol. 40, 309–317 (2015).

    Google Scholar 

  72. Botts, E. A. Distribution Change in South African Frogs. PhD thesis, Univ. Witwatersrand (2012).

  73. Bowman, J., Holloway, G. L., Malcolm, J. R., Middel, K. R. & Wilson, P. J. Northern range boundary dynamics of southern flying squirrels: evidence of an energetic bottleneck. Can. J. Zool. 83, 1486–1494 (2005).

    Google Scholar 

  74. Brommer, J. E. The range margins of northern birds shift polewards. Ann. Zool. Fenn. 41, 391–397 (2004).

    Google Scholar 

  75. Brommer, J. E., Lehikoinen, A. & Valkama, J. The breeding ranges of central European and Arctic bird species move poleward. PLoS ONE 7, e43648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brusca, R. C. et al. Dramatic response to climate change in the Southwest: Robert Whittaker’s 1963 Arizona Mountain plant transect revisited. Ecol. Evol. 3, 3307–3319 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Bulgarella, M., Trewick, S. A., Minards, N. A., Jacobson, M. J. & Morgan-Richards, M. Shifting ranges of two tree weta species (Hemideina spp.): competitive exclusion and changing climate. J. Biogeogr. 41, 524–535 (2014).

    Google Scholar 

  78. Büntgen, U. et al. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere 8, e01761 (2017).

    Google Scholar 

  79. Campos-Cerqueira, M. & Aide, T. M. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 5, e4059 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Campos-Cerqueira, M., Arendt, W. J., Wunderle, J. M. & Aide, T. M. Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecol. Evol. 7, 9914–9924 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim. Change 123, 201–214 (2014).

    Google Scholar 

  82. Chen, I.-C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).

    Google Scholar 

  83. Chen, I. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).

    CAS  PubMed  Google Scholar 

  84. Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).

    Google Scholar 

  86. Coals, P., Shmida, A., Vasl, A., Duguny, N. M. & Gilbert, F. Elevation patterns of plant diversity and recent altitudinal range shifts in Sinai’s high-mountain flora. J. Veg. Sci. 29, 255–264 (2018).

    Google Scholar 

  87. Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246 (2013).

    Google Scholar 

  88. Coristine, L. E. & Kerr, J. T. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecol. Evol. 5, 5162–5176 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Courtin, F. et al. Updating the northern tsetse limit in Burkina Faso (1949–2009): impact of global change. Int. J. Environ. Res. Public. Health 7, 1708–1719 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    CAS  PubMed  Google Scholar 

  91. Crozier, L. Winter warming facilitates range expansion: cold tolerance of the butterfly Atalopedes campestris. Oecologia 135, 648–656 (2003).

    PubMed  Google Scholar 

  92. Cubillos, J. et al. Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data. Mar. Ecol. Prog. Ser. 348, 47–54 (2007).

    Google Scholar 

  93. Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).

    Google Scholar 

  94. Czortek, P. et al. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—a rare arctic-alpine species in the Tatra Mts. Sci. Total Environ. 618, 1628–1637 (2018).

    CAS  PubMed  Google Scholar 

  95. Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).

    Google Scholar 

  96. Danby, R. K. & Hik, D. S. Evidence of recent treeline dynamics in southwest Yukon from aerial photographs. Arctic 60, 411–420 (2007).

    Google Scholar 

  97. Dawson, M. N., Grosberg, R. K., Stuart, Y. E. & Sanford, E. Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens. Mol. Ecol. 19, 1585–1605 (2010).

    CAS  PubMed  Google Scholar 

  98. Delava, E., Allemand, R., Léger, L., Fleury, F. & Gibert, P. The rapid northward shift of the range margin of a Mediterranean parasitoid insect (Hymenoptera) associated with regional climate warming. J. Biogeogr. 41, 1379–1389 (2014).

    Google Scholar 

  99. DeLuca, W. V. Ecology and Conservation of the Montane Forest Avian Community in Northeastern North America. PhD thesis, Univ. Massachusetts (2013).

  100. DeLuca, W. V. & King, D. I. Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. J. Ornithol. 158, 493–505 (2017).

    Google Scholar 

  101. Dieker, P., Drees, C. & Assmann, T. Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol. Conserv. 144, 2810–2818 (2011).

    Google Scholar 

  102. Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming? Int. J. Biometeorol. 50, 40–47 (2005).

    PubMed  Google Scholar 

  103. Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dou, H., Jiang, G., Stott, P. & Piao, R. Climate change impacts population dynamics and distribution shift of moose (Alces alces) in Heilongjiang Province of China. Ecol. Res. 628, 625–632 (2013).

    Google Scholar 

  105. Duarte, L. et al. Recent and historical range shifts of two canopy-forming seaweeds in north Spain and the link with trends in sea surface temperature. Acta Oecologica 51, 1–10 (2013).

    Google Scholar 

  106. Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Google Scholar 

  107. Dumais, C., Ropars, P., Denis, M., Dufour-Tremblay, G. & Boudreau, S. Are low altitude alpine tundra ecosystems under threat? A case study from the Parc National de la Gaspésie, Québec. Environ. Res. Lett. 9, 094001 (2014).

    Google Scholar 

  108. Engelhard, G. H., Pinnegar, J. K., Kell, L. T. & Rijnsdorp, A. D. Nine decades of North Sea sole and plaice distribution. ICES J. Mar. Sci. 68, 1090–1104 (2011).

    Google Scholar 

  109. Eskildsen, A. et al. Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob. Ecol. Biogeogr. 22, 1293–1303 (2013).

    Google Scholar 

  110. Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Google Scholar 

  111. Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Felde, V. A., Kapfer, J. & Grytnes, J. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 35, 922–932 (2012).

    Google Scholar 

  113. Fenberg, P. B. & Rivadeneira, M. M. Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J. Biogeogr. 38, 2286–2298 (2011).

    Google Scholar 

  114. Flousek, J., Telenský, T., Hanzelka, J. & Reif, J. Population trends of central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PLoS ONE 10, e0139465 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Forero-Medina, G., Terborgh, J., Socolar, S. J. & Pimm, S. L. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS ONE 6, e28535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Forsman, A., Betzholtz, P. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fox, R. et al. Moths count: recording moths for conservation in the UK. J. Insect Conserv. 15, 55–68 (2011).

    Google Scholar 

  118. Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).

    Google Scholar 

  119. Freeman, B. G. & Freeman, A. M. C. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc. Natl Acad. Sci. USA 111, 4490–4494 (2014).

    CAS  PubMed  Google Scholar 

  120. Frei, E., Bodin, J. & Walther, G.-R. Plant species’ range shifts in mountainous areas—all uphill from here? Bot. Helv. 120, 117–128 (2010).

    Google Scholar 

  121. Gamache, I. & Payette, S. Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J. Biogeogr. 32, 849–862 (2005).

    Google Scholar 

  122. Gonzalez, P. Desertification and a shift of forest species in the West African Sahel. Clim. Res. 17, 217–228 (2001).

    CAS  Google Scholar 

  123. Greenlee, E. S. The Effects of a Warming Climate on the Migratory Strategies of a Putatively Non-migratory Bird, the Gray Jay (Perisoreus canadensis). PhD thesis, Ohio State Univ. (2012).

  124. Greenwood, S., Chen, J.-C., Chen, C.-T. & Jump, A. S. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Glob. Change Biol. 20, 3756–3766 (2014).

    Google Scholar 

  125. Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).

    Google Scholar 

  126. Groom, Q. J. Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ 1, e77 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Hale, S. S., Buffum, H. W., Kiddon, J. A. & Hughes, M. M. Subtidal benthic invertebrates shifting northward along the US Atlantic Coast. Estuar. Coasts 40, 1744–1756 (2017).

    Google Scholar 

  128. Hargrove, L. J. Limits to Species’ Distributions: Spatial Structure and Dynamics of Breeding Bird Populations Along an Ecological Gradient. PhD thesis, Univ. California Riverside (2010).

  129. Harris, J. B. C. et al. Using diverse data sources to detect elevational range changes of birds on Mount Kinabalu, Malaysian Borneo. Raffles Bull. Zool. 25, 197–247 (2012).

    Google Scholar 

  130. Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshw. Sci. 34, 1040–1049 (2015).

    Google Scholar 

  131. Hermes, C., Jansen, J. & Schaefer, H. M. Habitat requirements and population estimate of the endangered Ecuadorian Tapaculo Scytalopus robbinsi. Bird Conserv. Int. 28, 302–318 (2018).

    Google Scholar 

  132. Hernández, L., Cañellas, I., Alberdi, I., Torres, I. & Montes, F. Assessing changes in species distribution from sequential large-scale forest inventories. Ann. Sci. 71, 161–171 (2014).

    Google Scholar 

  133. Hernández, L. et al. Exploring range shifts of contrasting tree species across a bioclimatic transition zone. Eur. J. Res. 136, 481–492 (2017).

    Google Scholar 

  134. Hersteinsson, P. & Macdonald, D. W. Interspecific competition and the geographical distribution of red and artic foxes Vulpes vulpes and Alopex lagopus. Oikos 64, 505–515 (1992).

    Google Scholar 

  135. Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).

    Google Scholar 

  136. Hiddink, J. G., Burrows, M. T. & García Molinos, J. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Change Biol. 21, 117–129 (2015).

    Google Scholar 

  137. Hill, N. J., Tobin, A. J., Reside, A. E., Pepperell, J. G. & Bridge, T. C. L. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Glob. Change Biol. 22, 1086–1096 (2016).

    Google Scholar 

  138. Hitch, A. T. & Leberg, P. L. Breeding distributions of North American bird species moving north as a result of climate change. Conserv. Biol. 21, 534–539 (2007).

    PubMed  Google Scholar 

  139. Hofgaard, A., Tømmervik, H., Rees, G. & Hanssen, F. Latitudinal forest advance in northernmost Norway since the early 20th century. J. Biogeogr. 40, 938–949 (2013).

    Google Scholar 

  140. Holzinger, B., Hülber, K., Camenisch, M. & Grabherr, G. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 195, 179–196 (2008).

    Google Scholar 

  141. Hovick, T. J. et al. Informing conservation by identifying range shift patterns across breeding habitats and migration strategies. Biodivers. Conserv. 25, 345–356 (2016).

    Google Scholar 

  142. Hsieh, C.-H., Kim, H. J., Watson, W., Di Lorenzo, E. & Sugihara, G. Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob. Change Biol. 15, 2137–2152 (2009).

    Google Scholar 

  143. Hsieh, C., Reiss, C. S., Hewitt, R. P. & Sugihara, G. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Can. J. Fish. Aquat. Sci. 65, 947–961 (2008).

    Google Scholar 

  144. Huang, Q., Sauer, J. R. & Dubayah, R. O. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Glob. Change Biol. 23, 3610–3622 (2017).

    Google Scholar 

  145. Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).

    PubMed  Google Scholar 

  146. Jiménez-Alfaro, B., Gavilán, R. G., Escudero, A., Iriondo, J. M. & Fernández-González, F. Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. J. Veg. Sci. 25, 1394–1404 (2014).

    Google Scholar 

  147. Jones, S. J., Lima, F. P. & Wethey, D. S. Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. Biogeogr. 37, 2243–2259 (2010).

    Google Scholar 

  148. Jones, S. J., Southward, A. J. & Wethey, D. S. Climate change and historical biogeography of the barnacle Semibalanus balanoides. Glob. Ecol. Biogeogr. 21, 716–724 (2012).

    Google Scholar 

  149. Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors 4, 84 (2011).

    PubMed  PubMed Central  Google Scholar 

  150. Jump, A. S., Huang, T. & Chou, C. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).

    Google Scholar 

  151. Juvik, J., Rodomsky, B., Price, J., Hansen, E. & Kueffer, C. ‘The upper limits of vegetation on Mauna Loa, Hawaii’: a 50th-anniversary reassessment. Ecology 92, 518–525 (2011).

    PubMed  Google Scholar 

  152. Kawakami, Y., Yamazaki, K. & Ohashi, K. Northward expansion and climatic factors affecting the distribution limits of Cheilomenes sexmaculata (Coleoptera: Coccinellidae) in Japan. Appl. Entomol. Zool. 49, 59–66 (2014).

    Google Scholar 

  153. Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).

    CAS  PubMed  Google Scholar 

  154. Kerby, T. K., Cheung, W. W. L., van Oosterhout, C. & Engelhard, G. H. Wondering about wandering whiting: distribution of North Sea whiting between the 1920s and 2000s. Fish. Res. 145, 54–65 (2013).

    Google Scholar 

  155. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    CAS  PubMed  Google Scholar 

  156. Kirchman, J. J. & Van Keuren, A. E. Altitudinal range shifts of birds at the southern periphery of the boreal forest: 40 years of change in the Adirondack mountains. Wilson J. Ornithol. 129, 742–753 (2017).

    Google Scholar 

  157. Kitahara, M., Iriki, M. & Shimizu, G. On the relathionship between the northward distributional expansion of the great mormon butterfly, Papilio memnon Lineatus, and climatic warming in Japan. Trans. Lepidopterol. Soc. Jpn 52, 253–264 (2001).

    Google Scholar 

  158. Kleisner, K. M. et al. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11, e0149220 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).

    Google Scholar 

  160. Kopp, C. W. & Cleland, E. E. Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western North America mountain range. J. Veg. Sci. 25, 135–146 (2014).

    Google Scholar 

  161. Kotwicki, S. & Lauth, R. R. Detecting temporal trends and environmentally-driven changes in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. Deep-Sea Res. Pt II 94, 231–243 (2013).

    Google Scholar 

  162. Kreuser, J. M. Climate Change, Range Shifts, and Differential Guild Responses of Michigan Breeding Birds. MSc thesis, Michigan State Univ. (2013).

  163. Kuhn, E., Lenoir, J., Piedallu, C. & Gégout, J.-C. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes. Glob. Change Biol. 22, 2094–2105 (2016).

    Google Scholar 

  164. Kuletz, K. J., Renner, M., Labunski, E. A. & Hunt, G. L. Changes in the distribution and abundance of albatrosses in the eastern Bering Sea: 1975–2010. Deep-Sea Res. Pt II 109, 282–292 (2014).

    Google Scholar 

  165. Kullman, L., Journal, T. & Feb, N. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).

    Google Scholar 

  166. Kullman, L. & Öberg, L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J. Ecol. 97, 415–429 (2009).

    Google Scholar 

  167. Kurihara, T. et al. Area-specific temporal changes of species composition and species-specific range shifts in rocky-shore mollusks associated with warming Kuroshio Current. Mar. Biol. 158, 2095–2107 (2011).

    Google Scholar 

  168. Kwon, T., Lee, C. M. & Kim, S. Northward range shifts in Korean butterflies. Clim. Change 126, 163–174 (2014).

    Google Scholar 

  169. La Sorte, F. A. & Thompson, F. R. III Poleward shifts in winter ranges of North American birds. Ecology 88, 1803–1812 (2007).

    PubMed  Google Scholar 

  170. Landa, C. S., Ottersen, G., Sundby, S., Dingsør, G. E. & Stiansen, J. E. Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fish. Oceanogr. 23, 506–520 (2014).

    Google Scholar 

  171. Larrucea, E. S. & Brussard, P. F. Shift in location of pygmy rabbit (Brachylagus idahoensis) habitat in response to changing environments. J. Arid Environ. 72, 1636–1643 (2008).

    Google Scholar 

  172. Lättman, H., Milberg, P., Palmer, M. W. & Mattsson, J. Changes in the distributions of epiphytic lichens in southern Sweden using a new statistical method. Nord. J. Bot. 27, 413–418 (2009).

    Google Scholar 

  173. Le Roux, P. C. & McGeoch, M. A. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 14, 2950–2962 (2008).

    Google Scholar 

  174. Lehikoinen, A. & Virkkala, R. North by north-west: climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129 (2016).

    Google Scholar 

  175. Leidenberger, S., Harding, K. & Jonsson, P. R. Ecology and distribution of the isopod genus Idotea in the Baltic Sea: key species in a changing environment. J. Crustac. Biol. 32, 359–381 (2012).

    Google Scholar 

  176. Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    CAS  PubMed  Google Scholar 

  177. Leonelli, G., Pelfini, M., Morra di Cella, U. & Garavaglia, V. Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40, 264–273 (2011).

    PubMed  Google Scholar 

  178. Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. & Santos, A. M. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob. Change Biol. 13, 2592–2604 (2007).

    Google Scholar 

  179. Lindley, J. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).

    Google Scholar 

  180. Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).

    Google Scholar 

  181. MacLaren, C. A. Climate change drives decline of Juniperus seravschanica in Oman. J. Arid Environ. 128, 91–100 (2016).

    Google Scholar 

  182. MacLean, I. M. D. et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob. Change Biol. 14, 2489–2500 (2008).

    Google Scholar 

  183. Mair, L. et al. Temporal variation in responses of species to four decades of climate warming. Glob. Change Biol. 18, 2439–2447 (2012).

    Google Scholar 

  184. Máliš, F. et al. Life stage, not climate change, explains observed tree range shifts. Glob. Change Biol. 22, 1904–1914 (2016).

    Google Scholar 

  185. Martinet, B. et al. Forward to the north: two Euro-Mediterranean bumblebee species now cross the Arctic Circle. Ann. Soc. Entomol. Fr. 51, 303–309 (2015).

    Google Scholar 

  186. Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).

    Google Scholar 

  187. Massimino, D., Johnston, A. & Pearce-Higgins, J. W. The geographical range of British birds expands during 15 years of warming. Bird Study 62, 523–534 (2015).

    Google Scholar 

  188. Mathisen, I. E., Mikheeva, A., Tutubalina, O. V., Aune, S. & Hofgaard, A. Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl. Veg. Sci. 17, 6–16 (2014).

    Google Scholar 

  189. Melles, S. J., Fortin, M. J., Lindsay, K. & Badzinski, D. Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Glob. Change Biol. 17, 17–31 (2011).

    Google Scholar 

  190. Menéndez, R., González-Megías, A., Jay-Robert, P. & Marquéz-Ferrando, R. Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr. 23, 646–657 (2014).

    Google Scholar 

  191. Merrill, R. M. et al. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 77, 145–155 (2008).

    PubMed  Google Scholar 

  192. Mieszkowska, N. et al. Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555, 241–251 (2006).

    Google Scholar 

  193. Molina-Martínez, A. et al. Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Divers. Distrib. 22, 1085–1098 (2016).

    Google Scholar 

  194. Monahan, W. B. & Hijmans, R. J. Ecophysiological constraints shape autumn migratory response to climate change in the North American field sparrow. Biol. Lett. 4, 595–598 (2008).

    PubMed  PubMed Central  Google Scholar 

  195. Morelli, T. L. et al. Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge. Proc. R. Soc. Lond. B Biol. Sci. 279, 4279–4286 (2012).

    Google Scholar 

  196. Moreno-Fernández, D., Hernández, L., Sánchez-González, M., Cañellas, I. & Montes, F. Space–time modeling of changes in the abundance and distribution of tree species. Ecol. Manag. 372, 206–216 (2016).

    Google Scholar 

  197. Moreno-Rueda, G., Pleguezuelos, J. M., Pizarro, M. & Montori, A. Northward shifts of the distributions of Spanish reptiles in association with climate change. Conserv. Biol. 26, 278–283 (2012).

    PubMed  Google Scholar 

  198. Moret, P., Aráuz, M., de los, A., Gobbi, M. & Barragán, A. Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv. Divers. 9, 342–350 (2016).

    Google Scholar 

  199. Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264 (2008).

    CAS  PubMed  Google Scholar 

  200. Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    CAS  PubMed  Google Scholar 

  201. Moskwik, M. Recent elevational range expansions in plethodontid salamanders (Amphibia: Plethodontidae) in the southern Appalachian Mountains. J. Biogeogr. 41, 1957–1966 (2014).

    Google Scholar 

  202. Mueter, F. J. & Litzow, M. A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18, 309–320 (2008).

    PubMed  Google Scholar 

  203. Myers, P., Lundrigan, B. L., Hoffman, S. M. G., Haraminac, A. P. & Seto, S. H. Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob. Change Biol. 15, 1434–1454 (2009).

    Google Scholar 

  204. Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).

    Google Scholar 

  205. Nicastro, K. R. et al. Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 11, 6 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. Nicolas, D. et al. Impact of global warming on European tidal estuaries: some evidence of northward migration of estuarine fish species. Reg. Environ. Change 11, 639–649 (2011).

    Google Scholar 

  207. Niven, D. K., Butcher, G. S. & Bancroft, G. T. Christmas bird counts and climate change: northward shifts in early winter abundance. Am. Birds 63, 10–15 (2010).

    Google Scholar 

  208. Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    Google Scholar 

  209. Orensanz, J. L., Ernst, B., Armstrong, D. A., Stabeno, P. J. & Livingston, P. Contraction of the geographical range of distribution of snow crab (Chionoecetes opilio) in the Eastern Bering Sea: an environmental ratchet? Cal Coop. Ocean Fish 45, 65–79 (2004).

    Google Scholar 

  210. Ottosen, K. M., Steingrund, P., Magnussen, E. & Payne, M. R. Distribution and timing of spawning Faroe Plateau cod in relation to warming spring temperatures. Fish. Res. 198, 14–23 (2018).

    Google Scholar 

  211. Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).

    Google Scholar 

  212. Pakeman, R. J. et al. Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Glob. Change Biol. 21, 3738–3747 (2015).

    Google Scholar 

  213. Paprocki, N., Heath, J. A. & Novak, S. J. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends. PLoS ONE 9, e86814 (2014).

    PubMed  PubMed Central  Google Scholar 

  214. Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    Google Scholar 

  215. Pateman, R. M., Hill, J. K., Roy, D. B., Fox, R. & Thomas, C. D. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 336, 1028–1030 (2012).

    CAS  PubMed  Google Scholar 

  216. Peñuelas, J. & Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).

    Google Scholar 

  217. Perissinotto, R., Pringle, E. L. & Giliomee, J. H. Southward expansion in beetle and butterfly ranges in South Africa. Afr. Entomol. 19, 61–69 (2011).

    Google Scholar 

  218. Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61, 963–970 (2010).

    CAS  Google Scholar 

  219. Pernollet, C. A., Korner-Nievergelt, F. & Jenni, L. Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157, 823–836 (2015).

    Google Scholar 

  220. Péron, C. et al. Interdecadal changes in at-sea distribution and abundance of subantarctic seabirds along a latitudinal gradient in the Southern Indian Ocean. Glob. Change Biol. 16, 1895–1909 (2010).

    Google Scholar 

  221. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS  Google Scholar 

  222. Peterson, T. A. Subtle recent distributional shifts in Great Plains bird species. Southwest. Nat. 48, 289–292 (2003).

    Google Scholar 

  223. Ploquin, E. F., Herrera, J. M. & Obeso, J. R. Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia 173, 1649–1660 (2013).

    PubMed  Google Scholar 

  224. Poloczanska, E. S. et al. Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. J. Exp. Mar. Biol. Ecol. 400, 145–154 (2011).

    Google Scholar 

  225. Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2009).

    Google Scholar 

  226. Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).

    Google Scholar 

  227. Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    Google Scholar 

  228. Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Evol. 2, 307–314 (2004).

    Google Scholar 

  229. Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).

    Google Scholar 

  230. Quero, J. Changes in the Euro-Atlantic fish species composition resulting from fishing and ocean warming. Ital. J. Zool. 65, 493–499 (1998).

    Google Scholar 

  231. Rannow, S. Do shifting forest limits in south-west Norway keep up with climate change? Scand. J. Res. 28, 574–580 (2013).

    Google Scholar 

  232. Rappole, J. H., Glasscosk, S., Goldberg, K., Song, D. & Faridani, S. Range change among new world tropical and subtropical birds. Bonn. Zool. Monogr. 57, 151–167 (2011).

    Google Scholar 

  233. Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).

    Google Scholar 

  234. Reid, S. B. & Goodman, D. H. Pacific lamprey in coastal drainages of California: occupancy patterns and contraction of the southern range. Trans. Am. Fish. Soc. 145, 703–711 (2016).

    Google Scholar 

  235. Reif, J. & Flousek, J. The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos 121, 1053–1060 (2012).

    Google Scholar 

  236. Renner, M. et al. Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries. Mar. Ecol. Prog. Ser. 484, 259–277 (2013).

    Google Scholar 

  237. Riley, M. E., Johnston, C. A., Feller, I. C. & Griffen, B. D. Range expansion of Aratus pisonii (mangrove tree crab) into novel vegetative habitats. Southeast. Nat. 13, N43–N48 (2014).

    Google Scholar 

  238. Rivadeneira, M. M. & Ferna, M. Shifts in southern endpoints of distribution in rocky intertidal species along the south-eastern Pacific coast. J. Biogeogr. 32, 203–209 (2005).

    Google Scholar 

  239. Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141857 (2014).

    Google Scholar 

  240. Rowe, R. J., Finarelli, J. A. & Rickart, E. A. Range dynamics of small mammals along an elevational gradient over an 80-year interval. Glob. Change Biol. 16, 2930–2943 (2010).

    Google Scholar 

  241. Rubal, M., Veiga, P., Cacabelos, E., Moreira, J. & Sousa-Pinto, I. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula. J. Sea Res. 77, 1–10 (2013).

    Google Scholar 

  242. Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).

    CAS  PubMed  Google Scholar 

  243. Sabatés, A., Martín, P., Lloret, J. & Raya, V. Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob. Change Biol. 12, 2209–2219 (2006).

    Google Scholar 

  244. Santos, M. J., Thorne, J. H. & Moritz, C. Synchronicity in elevation range shifts among small mammals and vegetation over the last century is stronger for omnivores. Ecography 38, 556–568 (2015).

    Google Scholar 

  245. Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).

    Google Scholar 

  246. Serrano, E. et al. Rapid northward spread of a Zooxanthellate coral enhanced by artificial structures and sea warming in the western Mediterranean. PLoS ONE 8, e52739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Sheldon, A. L. Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshw. Sci. 31, 765–774 (2012).

    Google Scholar 

  248. Shiyatov, S. G., Terent’ev, M. M., Fomin, V. V. & Zimmermann, N. E. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russ. J. Ecol. 38, 223–227 (2007).

    Google Scholar 

  249. Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301 (2017).

    Google Scholar 

  250. Solow, A. et al. A test for a shift in the boundary of the geographical range of a species. Biol. Lett. 10, 20130808 (2014).

    PubMed  PubMed Central  Google Scholar 

  251. Song, X. et al. Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain, China. J. Mt. Sci. 10, 363–369 (2013).

    Google Scholar 

  252. Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).

    Google Scholar 

  253. Stafford, R., Hart, A. G. & Goodenough, A. E. A visual method to identify significant latitudinal changes in species’ distributions. Ecol. Inform. 15, 74–84 (2013).

    Google Scholar 

  254. Stuart-Smith, R. D., Barrett, N. S., Stevenson, D. G. & Edgar, G. J. Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Glob. Change Biol. 16, 122–134 (2010).

    Google Scholar 

  255. Stueve, K. M., Isaacs, R. E., Tyrrell, L. E. & Densmore, R. V. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92, 496–506 (2011).

    PubMed  Google Scholar 

  256. Sultaire, S. M. et al. Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal. Proc. R. Soc. Lond. B Biol. Sci. 283, 20153104 (2016).

    Google Scholar 

  257. Swaby, S. E. & Potts, G. W. The sailfin dory, a first British record. J. Fish Biol. 54, 1338–1340 (1999).

    Google Scholar 

  258. Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).

    PubMed  PubMed Central  Google Scholar 

  259. Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).

    Google Scholar 

  260. Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Thorson, J. T., Ianelli, J. N. & Kotwicki, S. The relative influence of temperature and size-structure on fish distribution shifts: a case-study on walleye pollock in the Bering Sea. Fish Fish. 18, 1073–1084 (2017).

    Google Scholar 

  262. Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. & Beissinger, S. R. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob. Change Biol. 18, 3279–3290 (2012).

    Google Scholar 

  263. Tougou, D., Musolin, D. L. & Fujisaki, K. Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomol. Exp. Appl. 130, 249–258 (2009).

    Google Scholar 

  264. Tryjanowski, P., Sparks, T. H. & Profus, P. Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Divers. Distrib. 11, 219–223 (2005).

    Google Scholar 

  265. Tu, C., Tian, Y. & Hsieh, C.-H. Effects of climate on temporal variation in the abundance and distribution of the demersal fish assemblage in the Tsushima Warm Current region of the Japan Sea. Fish. Oceanogr. 24, 177–189 (2015).

    Google Scholar 

  266. Urli, M. et al. Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. J. Veg. Sci. 25, 147–159 (2014).

    Google Scholar 

  267. Välimäki, K., Lindén, A. & Lehikoinen, A. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia 181, 313–321 (2016).

    PubMed  Google Scholar 

  268. Van Bogaert, R. et al. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 38, 907–921 (2011).

    Google Scholar 

  269. Van Hal, R., Smits, K. & Rijnsdorp, A. D. How climate warming impacts the distribution and abundance of two small flatfish species in the North Sea. J. Sea Res. 64, 76–84 (2010).

    Google Scholar 

  270. VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Google Scholar 

  271. Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77 (2011).

    Google Scholar 

  272. Virkkala, R., Heikkinen, R. K., Lehikoinen, A. & Valkama, J. Matching trends between recent distributional changes of northern-boreal birds and species–climate model predictions. Biol. Conserv. 172, 124–127 (2014).

    Google Scholar 

  273. Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003 (2014).

    Google Scholar 

  274. Virkkala, R. & Lehikoinen, A. Birds on the move in the face of climate change: high species turnover in northern Europe. Ecol. Evol. 7, 8201–8209 (2017).

    PubMed  PubMed Central  Google Scholar 

  275. Virtanen, R. et al. Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Glob. Ecol. Biogeogr. 19, 810–821 (2010).

    Google Scholar 

  276. Vittoz, P., Bodin, J., Ungricht, S., Burga, C. A. & Walther, G. One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J. Veg. Sci. 19, 671–680 (2008).

    Google Scholar 

  277. Walters, G. E. & Wilderbuer, T. K. Decreasing length at age in a rapidly expanding population of northern rock sole in the eastern Bering Sea and its effect on management advice. J. Sea Res. 44, 17–26 (2000).

    Google Scholar 

  278. Walther, G.-R., Beißner, S. & Burga, C. A. Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548 (2005).

    Google Scholar 

  279. Wehtje, W. The range expansion of the great-tailed grackle (Quiscalus mexicanus Gmelin) in North America since 1880. J. Biogeogr. 30, 1593–1607 (2003).

    Google Scholar 

  280. Weinberg, J. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. 62, 1444–1453 (2005).

    Google Scholar 

  281. Wells, C. N. & Tonkyn, D. W. Range collapse in the Diana fritillary, Speyeria diana (Nymphalidae). Insect Conserv. Divers. 7, 365–380 (2014).

    Google Scholar 

  282. Wen, Z. et al. Heterogeneous distributional responses to climate warming: evidence from rodents along a subtropical elevational gradient. BMC Ecol. 17, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  283. Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832 (2011).

    CAS  PubMed  Google Scholar 

  284. Wethey, D. S. & Woodin, S. A. Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. Hydrobiologia 606, 139–151 (2008).

    Google Scholar 

  285. Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).

    PubMed  Google Scholar 

  286. Wilson, S., Anderson, E. M., Wilson, A. S. G., Bertram, D. F. & Arcese, P. Citizen science reveals an extensive shift in the winter distribution of migratory western grebes. PLoS ONE 8, e65408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).

    Google Scholar 

  288. Wright, D. H., NGuyen, C. V. & Anderson, S. Upward shifts in recruitment of high-elevation tree species in the northern Sierra Nevada, California. Calif. Fish Game 102, 17–31 (2016).

    Google Scholar 

  289. Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manag. 57, 207–219 (2016).

    Google Scholar 

  290. Wu, J. Can changes in the distribution of lizard species over the past 50 years be attributed to climate change? Theor. Appl. Climatol. 125, 785–798 (2016).

    Google Scholar 

  291. Wu, J. & Shi, Y. Attribution index for changes in migratory bird distributions: the role of climate change over the past 50 years in China. Ecol. Inform. 31, 147–155 (2016).

    Google Scholar 

  292. Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

    Google Scholar 

  293. Yang, D.-S., Conroy, C. J. & Moritz, C. Contrasting responses of Peromyscus mice of Yosemite National Park to recent climate change. Glob. Change Biol. 17, 2559–2566 (2011).

    Google Scholar 

  294. Yang, L. et al. Long-term ecological data for conservation: range change in the black-billed capercaillie (Tetrao urogalloides) in northeast China (1970s–2070s). Ecol. Evol. 8, 3862–3870 (2018).

    PubMed  PubMed Central  Google Scholar 

  295. Yemane, D. et al. Assessing changes in the distribution and range size of demersal fish populations in the Benguela Current Large Marine Ecosystem. Rev. Fish Biol. Fish. 24, 463–483 (2014).

    Google Scholar 

  296. Yukawa, J. et al. Distribution range shift of two allied species, Nezara viridula and N. antennata (Hemiptera: Pentatomidae), in Japan, possibly due to global warming. Appl. Entomol. Zool. 42, 205–215 (2007).

    Google Scholar 

  297. Zhang, R. et al. Geographic characteristics of sable (Martes zibellina) distribution over time in Northeast China. Ecol. Evol. 7, 4016–4023 (2017).

    PubMed  PubMed Central  Google Scholar 

  298. Zhang, Y., Xu, M., Adams, J. & Wang, X. Can Landsat imagery detect tree line dynamics? Int. J. Remote Sens. 30, 1327–1340 (2009).

    Google Scholar 

  299. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Google Scholar 

  300. Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).

    Google Scholar 

  301. R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  302. Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).

    PubMed  PubMed Central  Google Scholar 

  303. Gastner, M. T. & Newman, M. E. J. Diffusion-based method for producing density-equalizing maps. Proc. Natl Acad. Sci. USA 101, 7499–7504 (2004).

    CAS  PubMed  Google Scholar 

  304. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  305. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  306. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  307. Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the authors who kindly sent us their data on species range shift estimates. In particular, we are thankful to K. Kleisner and C. Hassall, who kindly provided data on behalf of the NOAA Northeast Fisheries Science Center, The Nature Conservancy, the British Arachnological Society and the Spider Recording Scheme. Finally, we acknowledge grants from the Agence Nationale de la Recherche (TULIP ANR-10-LABX-41 and CEBA ANR-10-LABX-25-01).

Author information

Authors and Affiliations

Authors

Contributions

J.L., L.C., J.M. and G.G. initiated and conceived the project idea. L.C. and J.L. built the general structure of the database. G.G., L.C., R.B., T.H. and J.L. reviewed the scientific literature and filled the database throughout the duration of the project. G.G. ensured data curation. L.B. and L.C. carried out the taxonomic harmonization of the database with help from J.M. T.H. linked the taxonomic backbone of the database to the Open Tree of Life (https://tree.opentreeoflife.org) and Catalogue of Life (http://catalogueoflife.org/) to produce a visualization of the phylogenetic coverage of the database. G.G., L.C., J.L. and R.B. prepared the set of methodological variables included as covariates in the subsequent analyses. R.B. and J.L. analysed the data with help from L.C., L.B. and G.G. T.H., R.B. and J.L. produced all of the figures. J.L. wrote the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to Jonathan Lenoir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cartograms of the spatial sampling effort in the geo-database.

Number of taxa per 2° × 2° grid cell for a, elevational and b, c, latitudinal range shifts across the terrestrial (a, b) and (c) marine realm.

Extended Data Fig. 2 Cartograms of the relative proportion of ectotherms, endotherms, phanerogams and cryptogams in the geo-database.

Relative proportion of data per taxonomic group per 2° × 2° grid cell for a, elevational range shifts and b, c, latitudinal range shifts across the terrestrial (a, b) and (c) marine realm. Ectotherms, endotherms, phanerogams and cryptogams are displayed in blue, red, brown and cyan, respectively.

Extended Data Fig. 3 Phylogenetic coverage of the geo-database.

Data on species range shifts throughout a, the whole tree of life with a focus on b, the phylogenetic relationships among the 56 taxonomic classes included in BioShifts. Simplified representation of the Open Tree of Life (https://tree.opentreeoflife.org) collapsed at the level of taxonomic classes. Clades included in BioShifts are highlighted by white dots at the tips. Branches’ colors indicate the taxonomic phylum to which classes belong. Bars show the number of species registered in BioShifts per taxonomic class. Pie charts at the tips of the phylogeny represent the proportion of species recorded in BioShifts (in black) compared to the total number of species recorded in Catalogue of Life (http://catalogueoflife.org/). The white part in the pie charts represent the proportion of species not covered in BioShifts. Colors represent the 20 phyla occurring in BioShifts (the number of species per phyla is provided in parentheses).

Extended Data Fig. 4 Degree of coupling between species elevational range shifts (m yr−1) and isotherm shifts in elevation (m yr−1).

The degree of coupling is displayed separately for the a-c, Northern and d-f, Southern Hemisphere and separately for the a, d, trailing edge, b, e, centroid and c, f, leading edge of the range. The dotted line represents the 1:1 relationship of perfect match, meaning that organisms are closely tracking the shifting isotherms. Ectotherms, endotherms, phanerogams and cryptogams are displayed in blue, red, brown and cyan, respectively.

Extended Data Fig. 5 Degree of coupling between terrestrial species latitudinal range shifts (km yr−1) and isotherm shifts in latitude (km yr−1).

The degree of coupling is displayed separately for the a-c, Northern and d-f, Southern Hemisphere and separately for the a, d, trailing edge, b, e, centroid and c, f, leading edge of the range. The dotted line represents the 1:1 relationship of perfect match, meaning that organisms are closely tracking the shifting isotherms. Ectotherms, endotherms, phanerogams and cryptogams are displayed in blue, red, brown and cyan, respectively. Note that there are no data on the velocity of terrestrial latitudinal range shifts at the trailing and leading edge of range shifters for the Southern Hemisphere.

Extended Data Fig. 6 Degree of coupling between marine species latitudinal range shifts (km yr−1) and isotherm shifts in latitude (km yr−1).

The degree of coupling is displayed separately for the ac, Northern and df, Southern Hemisphere and separately for the a, d, trailing edge, b, e, centroid and c, f, leading edge of the range. The dotted line represents the 1:1 relationship of perfect match, meaning that organisms are closely tracking the shifting isotherms. Ectotherms and cryptogams are displayed in blue and cyan, respectively.

Extended Data Fig. 7 Degree of coupling between species range shifts and isotherm shifts for marine cryptogams.

Interaction effects between the VIS and a, baseline temperatures or b, the standardized HFI on the velocity of species range shifts along the latitudinal gradients for marine cryptogams. The two white lines and the white hatching represent the range of conditions for which marine cryptogams closely track the shifting isotherms in latitude (that is slope parameter not significantly different from 1 based on 5,000 bootstrap iterations).

Extended Data Fig. 8 The climate warming tracking capacity of marine organisms.

Combined effect of mean annual sea surface temperature prior to the baseline survey (baseline temperatures) and human pressures on the environment (the standardized HFI) on the slope of the relationship between the velocity of marine species range shifts and the VIS along the latitudinal gradient in the oceans (climate warming tracking capacity). The white lines and hatching represent the range of conditions for which marine taxa closely track the shifting isotherms in latitude (that is slope parameter not significantly different from 1 based on 5,000 bootstrap iterations). White transparent dots show the distribution of the raw data (N = 1,403 range shift estimates) used to fit the model. This plot includes both marine ectotherms and cryptogams.

Extended Data Fig. 9 Degree of coupling between species range shifts and isotherm shifts for terrestrial endotherms, phanerogams and cryptogams.

Interaction effects between a-c, the VIS along the latitudinal gradient and the standardized HFI as well as between d-f, the VIS along elevational gradients and baseline temperatures on the velocity of species range shifts for terrestrial (a, d) endotherms, (b, e) phanerogams and (c, f) cryptogams. Note that negative slopes do not necessarily indicate species range shifts in the opposite direction to isotherm shifts, unless the signs of the two estimates (for a given combination of baseline temperatures and standardized HFI) are opposite. Credit: Icon Library (mountain silhouette) under a CC0 Public Domain Licence.

Extended Data Fig. 10 Cartograms of the predicted slope coefficient between the velocity of species range shifts and the velocity of isotherm shifts along elevational gradients for terrestrial endotherms, phanerogams and cryptogams.

Slope estimate per 2° × 2° grid cell along elevational gradients for a, endotherms, b, phanerogams and c, cryptogams. The number of range shift estimates (that is sample size) in each grid cell was used to distort the map: the bigger the grid cell, the larger the sample size. Note that negative slopes do not necessarily mean that species are shifting in the opposite direction to isotherm shifts (see Extended Data Fig. 9).

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and footnotes to Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Tables

Supplementary Tables 1 and 2 and related metadata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenoir, J., Bertrand, R., Comte, L. et al. Species better track climate warming in the oceans than on land. Nat Ecol Evol 4, 1044–1059 (2020). https://doi.org/10.1038/s41559-020-1198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1198-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing