Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Herbivore effects increase with latitude across the extent of a foundational seagrass

Abstract

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process (‘tropicalization’) has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of study area and representative photos of simulated grazing.
Fig. 2: Grazing effects on seagrass productivity across latitude and light gradients.
Fig. 3: Standardized coefficients from the ‘latitude’ model of seagrass productivity.
Fig. 4: Grazing effects on rhizome non-structural carbohydrates.
Fig. 5: Standardized coefficients from the ‘light/temperature’ model of seagrass productivity.

Similar content being viewed by others

Data availability

All data used in this study are available at the FigShare repository (https://doi.org/10.6084/m9.figshare.24649641.v1).

References

  1. Harrington, R., Woiwod, I. & Sparks, T. Climate change and trophic interactions. Trends Ecol. Evol. 14, 146–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  Google Scholar 

  3. Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang. Biol. 20, 2221–2229 (2014).

    Article  PubMed  Google Scholar 

  4. Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl Acad. Sci. USA 115, 8990–8995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santana-Garcon, J. et al. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Proc. R. Soc. B 290, 20221744 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bennett, S. et al. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).

    Article  PubMed  Google Scholar 

  8. Zarco-Perello, S. et al. Persistence of tropical herbivores in temperate reefs constrains kelp resilience to cryptic habitats. J. Ecol. 109, 2081–2094 (2020).

    Article  Google Scholar 

  9. Bosch, N. et al. Persistent thermally driven shift in the functional trait structure of herbivorous fishes: evidence of top-down control on the rebound potential of temperate seaweed forests? Glob. Chang. Biol. 28, 2296–2311 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922 (2012).

    Article  PubMed  Google Scholar 

  13. Nowicki, R.J., Fourqurean, J.W., Heithaus, M.R. in Seagrasses of Australia (eds Larkum, A., Kendrick, G. & Ralph, P.) Ch. 16 (Springer, 2018).

  14. Valentine, J. F. & Heck, K. L. Herbivory in seagrass meadows: an evolving paradigm. Estuaries Coasts 44, 491–505 (2021).

    Article  Google Scholar 

  15. Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–948 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987 (2006).

    Article  Google Scholar 

  17. Fodrie, F. J., Heck, K. L., Powers, S. P., Graham, W. & Robinson, K. Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob. Chang. Biol. 16, 48–59 (2010).

    Article  Google Scholar 

  18. Heck, K. L., Fodrie, F. J., Madsen, S., Baillie, C. J. & Byron, D. A. Seagrass consumption by native and a tropically associated fish species: potential impacts of the tropicalization of the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 520, 165–173 (2015).

    Article  Google Scholar 

  19. Avens, L. et al. Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Mar. Ecol. Prog. Ser. 458, 213–229 (2012).

    Article  Google Scholar 

  20. Hieb, E. E., Carmichael, R. H., Aven, A., Nelson-Seely, C. & Taylor, N. Sighting demographics of the West Indian manatee Trichechus manatus in the north-central Gulf of Mexico supported by citizen-sourced data. Endanger. Species Res. 32, 321–332 (2017).

    Article  Google Scholar 

  21. Christianen, M. J. A. et al. A dynamic view of seagrass meadows in the wake of successful green turtle conservation. Nat. Ecol. Evol. 2021, 553–555 (2021).

    Article  Google Scholar 

  22. Heck, K. L. & Valentine, J. F. Plant–herbivore interactions in seagrass meadows. J. Exp. Mar. Biol. Ecol. 326, 420–436 (2006).

    Article  Google Scholar 

  23. Fourqurean, J. W., Manuel, S., Coates, K. A., Kenworthy, W. J. & Smith, S. R. Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Mar. Ecol. Prog. Ser. 419, 63–75 (2010).

    Article  Google Scholar 

  24. Christianen, M. J. A. et al. Seagrass ecosystem multifunctionality under the rise of a flagship marine megaherbivore. Glob. Chang. Biol. 29, 215–230 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaines, S. D. & Lubchenco, J. A unified approach to marine plant–herbivore interactions. II. Biogeography. Annu. Rev. Ecol. Syst. 13, 111–138 (1982).

    Article  Google Scholar 

  26. Vergés, A. et al. Latitudinal variation in seagrass herbivory: global patterns and explanatory mechanisms. Glob. Ecol. Biogeogr. 27, 1068–1079 (2018).

    Article  Google Scholar 

  27. He, Q. & Silliman, B. R. Biogeographic consequences of nutrient enrichment for plant–herbivore interactions in coastal wetlands. Ecol. Lett. 18, 462–471 (2015).

    Article  PubMed  Google Scholar 

  28. Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).

    Article  PubMed  Google Scholar 

  30. Christianen, M. J. A. et al. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. J. Ecol. 100, 546–560 (2012).

    Article  CAS  Google Scholar 

  31. Holzer, K. K. & McGlathery, K. J. Cultivation grazing response in seagrass may depend on phosphorus availability. Mar. Biol. 163, 88 (2016).

    Article  Google Scholar 

  32. Goecker, M. E., Heck, K. L. & Valentine, J. F. Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar. Ecol. Prog. Ser. 286, 239–248 (2005).

    Article  Google Scholar 

  33. Unsworth, R. K. F., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Menge, B. A. et al. Inter-hemispheric comparison of bottom-up effects on community structure: insights revealed using the comparative-experimental approach. Ecol. Res. 17, 1–16 (2002).

    Article  Google Scholar 

  35. Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article  Google Scholar 

  36. Duffy, J. E. et al. Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecol. Lett. 18, 696–705 (2015).

    Article  PubMed  Google Scholar 

  37. Alcoverro, T., Manzanera, M. & Romero, J. Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Mar. Ecol. Prog. Ser. 211, 129–137 (2001).

    Article  Google Scholar 

  38. Campbell, J. E. & Fourqurean, J. W. Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida. Mar. Ecol. Prog. Ser. 387, 109–123 (2009).

    Article  CAS  Google Scholar 

  39. Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13, 685–694 (2010).

    Article  PubMed  Google Scholar 

  40. Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and Baja California to a multiyear heatwave. Front. Mar. Sci 6, 413 (2019).

    Article  Google Scholar 

  41. Fourqurean, J. W., Manuel, S. A., Coates, K. A., Massey, S. C. & Kenworthy, W. J. Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the green sea turtle Chelonia mydas. Estuaries Coasts 42, 1524–1540 (2019).

    Article  CAS  Google Scholar 

  42. Rodriguez, A. R. & Heck, K. L. Green turtle herbivory and its effects on the warm, temperate seagrass meadows of St. Joseph Bay, Florida (USA). Mar. Ecol. Prog. Ser. 639, 37–51 (2020).

    Article  Google Scholar 

  43. Carruthers, T. J. B., Barnes, P. A. G., Jacome, G. E. & Fourqurean, J. W. Lagoon scale processes in a coastally influenced Caribbean system: implications for the seagrass Thalassia testudinum. Caribb. J. Sci. 41, 441–455 (2005).

    Google Scholar 

  44. Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 1747–1763 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Bio. Ecol. 350, 144–175 (2007).

    Article  Google Scholar 

  46. Kirsch, K., Valentine, J. F. & Heck, K. Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Mar. Ecol. Prog. Ser. 227, 71–85 (2002).

    Article  Google Scholar 

  47. Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117 (2019).

    Article  Google Scholar 

  48. Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Chang. Biol. 26, 6805–6812 (2020).

    Article  PubMed  Google Scholar 

  49. Burkholder, J. A. M., Tomasko, D. A. & Touchette, B. W. Seagrasses and eutrophication. J. Exp. Mar. Bio. Ecol. 350, 46–72 (2007).

    Article  Google Scholar 

  50. Duarte, C. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41, 87–112 (1995).

    Article  Google Scholar 

  51. Campbell, J. E. et al. Herbivore community determines the magnitude and mechanism of nutrient effects on subtropical and tropical seagrasses. J. Ecol. 106, 401–412 (2018).

    Article  CAS  Google Scholar 

  52. McGlathery, K. J. Nutrient and grazing influences on a subtropical seagrass community. Mar. Ecol. Prog. Ser. 122, 239–252 (1995).

    Article  Google Scholar 

  53. Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).

    Article  CAS  Google Scholar 

  54. Chapin, F. S., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).

    Article  Google Scholar 

  55. Campbell, J. E., Yarbro, L. A. & Fourqurean, J. W. Negative relationships between the nutrient and carbohydrate content of the seagrass Thalassia testudinum. Aquat. Bot. 99, 56–60 (2012).

    Article  CAS  Google Scholar 

  56. Lee, K. S. & Dunton, K. H. Influence of sediment nitrogen-availability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Mar. Biol. 134, 217–226 (1999).

    Article  Google Scholar 

  57. Kuiper-Linley, M., Johnson, C. R. & Lanyon, J. M. Effects of simulated green turtle grazing on seagrass abundance, growth and nutritional status in Moreton Bay, south-east Queensland, Australia. Mar. Freshw. Res 58, 492 (2007).

    Article  CAS  Google Scholar 

  58. Kelkar, N., Arthus, R., Marba, N. & Alcoverro, T. Greener pastures? High-density feeding aggregations of green turtle precipitate species shifts in seagrass meadows. J. Ecol. 101, 1158–1168 (2013).

    Article  Google Scholar 

  59. Demko, A. M. et al. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98, 2312–2321 (2017).

    Article  PubMed  Google Scholar 

  60. Hernan, G. et al. Latitudinal variation in plant defence against herbivory in a marine foundation species does not follow a linear pattern: the importance of resource availability. Glob. Ecol. Biogeogr. 30, 220–234 (2020).

    Article  Google Scholar 

  61. Darnell, K. M. & Heck, K. L. Species-specific effects of prior grazing on the palatability of turtlegrass. J. Exp. Mar. Bio. Ecol. 440, 225–232 (2013).

    Article  Google Scholar 

  62. Steele, L. & Valentine, J. F. Idiosyncratic responses of seagrass phenolic production following sea urchin grazing. Mar. Ecol. Prog. Ser. 466, 81–92 (2012).

    Article  CAS  Google Scholar 

  63. Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 28 (2014).

    Article  Google Scholar 

  64. Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P. & Côté, I. M. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Chang. Biol. 27, 4096–4109 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez, A. M. & van Tussenbroek, B. I. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Mar. Ecol. Prog. Ser. 517, 143–157 (2014).

    Article  Google Scholar 

  68. Verges, A. et al. Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Oecologia 155, 751–760 (2008).

    Article  PubMed  Google Scholar 

  69. Ferdie, M. & Fourqurean, J. W. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnol. Oceanogr. 49, 2082–2094 (2004).

    Article  Google Scholar 

  70. Zieman, J. C. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4, 139–143 (1974).

    Article  Google Scholar 

  71. Fourqurean, J. W. et al. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar. Biol. 138, 341–354 (2001).

    Article  Google Scholar 

  72. Alcoverro, T. & Mariani, S. Patterns of fish and sea urchin grazing on tropical Indo-Pacific seagrass beds. Ecography 27, 361–365 (2004).

    Article  Google Scholar 

  73. Tomas, F., Turon, X. & Romero, J. Seasonal and small-scale variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 301, 95–107 (2005).

    Article  Google Scholar 

  74. Scott, A. L., York, P. H. & Rasheed, M. A. Spatial and temporal patterns in macroherbivore grazing in a multi-species tropical seagrass meadow of the Great Barrier Reef. Diversity 13, 12 (2021).

    Article  Google Scholar 

  75. Fourqurean, J. W. & Zieman, J. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, USA. Biogeochemistry 61, 229–245 (2002).

    Article  CAS  Google Scholar 

  76. Smith D. Removing and Analyzing Total Nonstructural Carbohydrates from Plant Tissue. Res. Rep. 41 (University of Wisconsin, 1969).

  77. Atkinson, M. J. & Smith, S. V. C:N:P rations of benthic marine plants. Limnol. Oceanogr. 28, 568–574 (1983).

    Article  CAS  Google Scholar 

  78. Lee, K. S. & Dunton, K. H. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 196, 39–48 (2000).

    Article  CAS  Google Scholar 

  79. Darnell, K. M. & Dunton, K. H. Plasticity in turtle grass (Thalassia testudinum) flower production as a response to porewater nitrogen availability. Aquat. Bot. 138, 100–106 (2017).

    Article  CAS  Google Scholar 

  80. Armitage, A. R., Frankovich, T. A. & Fourqurean, J. W. Long-term effects of adding nutrients to an oligotrophic coastal environment. Ecosystems 14, 430–444 (2011).

    Article  CAS  Google Scholar 

  81. Van Katwijk, M. M. et al. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia. Mar. Pollut. Bull. 62, 1512–1520 (2011).

    Article  PubMed  Google Scholar 

  82. Zuur, A., Leno, E. & Elphick, C. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evolution 1, 3–14 (2010).

    Article  Google Scholar 

  83. Pinheiro J., Bates D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-162, R-project https://cran.r-project.org/package=nlme (2023).

  84. Mevik B. H., Wehrens R. & Liland K. H. pls: partial least squares and principal component regression. R package version 2.7.0 https://cran.r-project.org/src/contrib/Archive/pls/pls_2.7-0.tar.gz (2020).

  85. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).

    Article  Google Scholar 

  86. Fourqurean, J. W. et al. Seagrass abundance predicts surficial soil organic carbon stocks across the range of Thalassia testudinum in the western North Atlantic. Estuaries Coasts 46, 1280–1301 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to the many staff, students and volunteers who helped with fieldwork and processing in the lab. We thank those at the Smithsonian Marine Station: S. Jones, Z. Foltz, S. Carlson, I. Segura-Garcia, M. Johnson, A. Looby, O. Carmack and D. Branson. We also thank L Spiers, J. Kuehl and J. Clamp at the Central Caribbean Marine Institute (CCMI) in Little Cayman; A. E. MacDonald at the Galveston site; K. Coates at the Bermuda site; A. John, A. Safryghin, J. Reinhart, K. Malinowski, L. Woodlee, M. Speegle, M, England, S. Glew, T. Leon and N. Knight at the Andros, Bahamas site; S. Engel and J. van Duijnhoven at the Bonaire site; S. Alford, T. Gruninger, A. Looby (again), C. Sullivan, S. Downey, P. Saldana, W. Scheffel, J. Roth and T. Jones at the Crystal River site; T. Gluckman, C. Raguse, I. Primrose Hartman, W. F. Bigelow and M. Albury at the Eleuthera, Bahamas site; and M. Guadalupe Barba Santos at the Puerto Morelos site. We also thank M. Sarsich and the Blue Carbon Analysis Laboratory at Florida International University for assistance with the nutrient analyses. Special thanks to E. Duffy, the Smithsonian MarineGEO program and the Zostera Experimental Network for key insights and inspiration behind this network. This work was conducted under the following permits: at Eleuthera under permit numbers MAMR/FIS/17 and MAMR/FIS/9 issued by the Department of Marine Resources; at Bonaire under permit number 558/2015‐2015007762 issued by Openbaar Lichaam Bonaire; at Belize under permit number 0004-18 issued by the Belize Fisheries Department; at Panama under permit numbers SE/AP-23-17 and SE/AO-1-19 issued by the Ministerio de Ambiente de la Republica de Panama; at Andros by permits issued by The Bahamas National Trust and the Bahamas Environment, Science and Technology Commission; and at Cayman Islands by a permit issued by the Department of Environment. This is contribution #1679 from the Coastlines and Oceans Division of the Institute of Environment at Florida International University, contribution #1213 from the Smithsonian Marine Station and contribution #1077 from the Caribbean Coral Reef Ecosystems Program. Funding for this project was provided by the US National Science Foundation (OCE-1737247 to J.E.C., A.H.A. and VJP; OCE-2019022 to J.E.C.; OCE-1737144 to K.L.H.; and OCE-1737116 to J.G.D.). M.J.A.C. was supported by I-Veni grant 181.002.

Author information

Authors and Affiliations

Authors

Contributions

J.E.C., O.K.R., A.H.A., J.G.D., K.L.H. and V.J.P. designed the research; J.E.C., O.K.R., A.H.A., J.G.D., K.L.H., V.J.P., A.R.A., S.C.B., E.B., L.C., M.J.A.C., G.D., K.D., J.W.F., T.K.F., B.M.G., R.G., J.A.G., R.G.-V., V.J.J., O.A.A.K., S.T.L., C.W.M., I.G.M.L., A.M.M., V.A.M., S.A.M., C.M.-M., D.A.O’B., O.R.O’S., C.J.P., C.P., L.K.R., A.R., L.M.R.B., A.S., Y.S., K.S., F.O.H.S., U.S., J.E.T., B.V.T. and W.L.W. performed the research; J.E.C. analysed the data with contributions from C.J.M. and O.K.R.; and J.E.C. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Justin E. Campbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Guilherme Longo and Jordi Pagès for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Graphical representation of treatments established at each site.

Plots (0.25m2) were established at each site manipulating (1) herbivory intensity (via leaf clipping) and (2) nutrient availability (via Osmocote nutrient bags attached center plot), for a total of 10 treatments (n = 5/site). Mesh cages were established around the clipped treatments to control variation in natural grazing. Partial cages and open plots were also established, but these treatments did not receive leaf clipping. Lower panel displays the gridded plot arrangement at each site. Photographs display plot / cage placement (upper) and Osmocote fertilizer bag (lower).

Extended Data Fig. 2 Winter effects of grazing on leaf productivity across latitude.

Lines represent linear fits plus 95% confidence intervals for the severe grazing (red), moderate grazing (blue) and no grazing (black) treatments. Points represent individual plots and are jittered for clarity (n = 50 plots/site).

Extended Data Fig. 3 Light and temperature trends across latitude.

Site means for light (daily photosynthetically active radiation, µmol photons m−2 s−1) and temperature across latitude (ºN). Data have been divided into two seasons based on sampling timeline. ‘Summer’ represents measurements recorded from approximately Apr 2018 - Sept 2018, and ‘Winter’ represents measurements recorded from approximately Sept 2018 – Apr 2019. Trend lines represent fits of generalized additive models (GAMs) and grey shading displays 95% confidence intervals. Significant tests were two-sided. Sites are labeled: Lac Bay, Bonaire (BONA), Carrie Bow Cay, Belize (CARR), Little Cayman, Cayman Islands (CAYM), Puerto Morelos, Mexico (PUER), Andros, Bahamas (ANDR), Eleuthera, Bahamas (ELEU), Naples, Florida (NAPL), Crystal River, Florida (CRYS), Galveston, Texas (GALV), St. Joseph Bay, Florida (JOES), Riddell’s Bay, Bermuda (BERM). Note that BOCA was an outlier for light levels and was excluded from the analysis (see Methods) to understand trends across the broader network.

Extended Data Fig. 4 Temperature density distributions across sites.

Plots display frequency distributions of recorded temperatures at each site during the summer and winter seasons. Sites have been ordered from top to bottom in order of decreasing latitude.

Extended Data Fig. 5 Latitudinal trends in grazing.

Rates of seagrass grazing across latitude (ºN). Total grazing rate (left panel) represents the proportion of examined shoots with evidence of any grazing mark. Grazing rate – Fish only (right panel) represents the proportion of shoots with only characteristic fish grazing marks (crescent shaped bite marks). Grazing rates were averaged across seasons. Trend lines represent fits of generalized additive models (GAMs) and grey shading displays 95% confidence intervals. Significance tests were two-sided.

Extended Data Fig. 6 Main effects of simulated grazing on belowground non-structural carbohydrates.

Grazing effects (no clip vs full clip, only) on rhizome total non-structural carbohydrates. Samples were collected at the experiment end after the winter season. Points represent individual plots and are jittered for clarity (n = 10 plots/site). Description: vertical heavy lines (medians); solid boxes (interquartile range); whiskers (range of non-outlier data).

Extended Data Fig. 7 Trends in leaf productivity, shoot density and leaf width across sites.

Boxplots of seagrass metrics measured in unmanipulated, open control plots (n = 5 plots/site) after the summer (upper panels) and winter (lower panels) seasons. Sites decline in latitude from top to bottom. Description: vertical heavy lines (medians); solid boxes (interquartile range); whiskers (range of non-outlier data).

Extended Data Fig. 8 Rhizome non-structural carbohydrates.

Boxplot of rhizome carbohydrates measured in control plots (n = 5 plots/site). Sites decline in latitude from top to bottom. Description: vertical heavy lines (medians); solid boxes (interquartile range); whiskers (range of non-outlier data).

Extended Data Fig. 9 Trends in leaf tissue nutrient content across latitude.

Values represent means of leaf tissue nitrogen (N) and phosphorus (P) content from the control, unmanipulated plots at each site across latitude (°N) (data previously published86). The limitation index (LI) was calculated for each site (see Methods). Note, higher LI values indicate seagrasses that are more nutrient-limited, thus a lower availability of ambient nutrients. For comparison, dashed red and black lines represent mean values from the enriched and unenriched open plots, respectively.

Extended Data Table 1 Site locations, codes, and environmental parameters

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 1–13.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, J.E., Kennedy Rhoades, O., Munson, C.J. et al. Herbivore effects increase with latitude across the extent of a foundational seagrass. Nat Ecol Evol 8, 663–675 (2024). https://doi.org/10.1038/s41559-024-02336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02336-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing