Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late acquisition of the rTCA carbon fixation pathway by Chlorobi

Abstract

The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An enzymatic map of the rTCA cycle accompanied by an annotated 16S rRNA tree and reduced timeline depicting the inferred acquisition of the rTCA cycle by Chlorobiales.
Fig. 2: Bulk and compound-specific carbon isotope data from the BCF.

Similar content being viewed by others

Data availability

All data generated during this study are included within the Supplementary information and are available from the corresponding authors upon request.

References

  1. Ward, L. M. & Shih, P. M. The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time. Free Radic. Biol. Med. 140, 188–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evolution 4, 359–370 (1975).

    Article  CAS  Google Scholar 

  3. Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200–204 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kitadai, N., Kameya, M. & Fujishima, K. Origin of the reductive tricarboxylic acid (rTCA) cycle-type CO(2) fixation: a perspective. Life 7, 39 (2017).

    Article  PubMed Central  Google Scholar 

  6. Overmann, J. in Sulfur Metabolism in Phototrophic Organisms (eds Hell, R. et al.) 375–396 (Springer, 2008).

  7. Camacho, A., Walter, X. A., Picazo, A. & Zopfi, J. Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8, 323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thompson, K. J., Simister, R. L., Hahn, A. S., Hallam, S. J. & Crowe, S. A. Nutrient acquisition and the metabolic potential of photoferrotrophic Chlorobi. Front. Microbiol. 8, 1212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B 288, 20210675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magnabosco, C., Moore, K. R., Wolfe, J. M. & Fournier, G. P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 16, 179–189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Krügel, H., Krubasik, P., Weber, K., Saluz, H. P. & Sandmann, G. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1439, 57–64 (1999).

    Article  Google Scholar 

  13. Cui, X. et al. Niche expansion for phototrophic sulfur bacteria at the Proterozoic-Phanerozoic transition. Proc. Natl Acad. Sci. USA 117, 17599–17606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marin, J., Battistuzzi, F. U., Brown, A. C. & Hedges, S. B. The timetree of prokaryotes: new insights into their evolution and speciation. Mol. Biol. Evol. 34, 437–446 (2016).

    Google Scholar 

  15. Paoletti, M. M. & Fournier, G. P. Chimeric inheritance and crown-group acquisitions of carbon fixation genes within Chlorobiales: origins of autotrophy in Chlorobiales and implication for geological biomarkers. PLoS ONE 17, e0275539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stal, L. J. & Moezelaar, R. Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21, 179–211 (1997).

    Article  CAS  Google Scholar 

  17. Tang, K.-H. & Blankenship, R. E. Both forward and reverse TCA cycles operate in green sulfur bacteria. J. Biol. Chem. 285, 35848–35854 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blair, N., Leu, A., Olsen, J., Kwong, E. & Des Marais, D. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 50, 996–1001 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    Article  CAS  Google Scholar 

  20. Badger, M. R. & Bek, E. J. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 59, 1525–1541 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Hanson, T. E. & Tabita, F. R. A ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl Acad. Sci. USA 98, 4397–4402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sirevåg, R., Buchanan, B. B., Berry, J. A. & Troughton, J. H. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38 (1977).

    Article  PubMed  Google Scholar 

  23. Zyakun, A. M., Lunina, O. N., Prusakova, T. S., Pimenov, N. V. & Ivanov, M. V. Fractionation of stable carbon isotopes by photoautotrophically growing anoxygenic purple and green sulfur bacteria. Microbiology 78, 757–768 (2009).

    Article  CAS  Google Scholar 

  24. Quandt, L., Gottschalk, G., Ziegler, H. & Stichler, W. Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125–128 (1977).

    Article  CAS  Google Scholar 

  25. Fulton, J. M., Arthur, M. A., Thomas, B. & Freeman, K. H. Pigment carbon and nitrogen isotopic signatures in euxinic basins. Geobiology 16, 429–445 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Guy, R. D., Fogel, M. L. & Berry, J. A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia, A. K. et al. Effects of RuBisCO and CO2 concentration on cyanobacterial growth and carbon isotope fractionation. Geobiology 21, 390–403 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Hurley, S. J., Wing, B. A., Jasper, C. E., Hill, N. C. & Cameron, J. C. Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. Sci. Adv. 7, eabc8998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2] aq: theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

    Article  CAS  Google Scholar 

  30. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton, T. L., Bryant, D. A. & Macalady, J. L. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18, 325–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

    Article  CAS  Google Scholar 

  33. Freeman, K. H., Hayes, J. M., Trendel, J.-M. & Albrecht, P. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343, 254–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Hayes, J. M., Freeman, K. H., Popp, B. N. & Hoham, C. H. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16, 1115–1128 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Hayes, J. M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43, 225–277 (2001).

    Article  CAS  Google Scholar 

  36. van der Meer, M. T. J., Schouten, S. & Damsté, J. S. S. The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org. Geochem. 28, 527–533 (1998).

    Article  Google Scholar 

  37. Crick, I. H., Boreham, C. J., Cook, A. C. & Powell, T. G. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, Northern Australia II: assessment of source rock potential. AAPG Bull. 72, 1495–1514 (1988).

    CAS  Google Scholar 

  38. Meyer, K. M. & Kump, L. R. Oceanic Euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).

    Article  CAS  Google Scholar 

  39. Mukherjee, I. et al. Pyrite trace-element and sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: proxy for oxidative weathering. Am. Mineralogist: J. Earth Planet. Mater. 104, 1256–1272 (2019).

    Article  Google Scholar 

  40. Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

    Article  CAS  Google Scholar 

  41. Brocks, J. J. & Schaeffer, P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim. Cosmochim. Acta 72, 1396–1414 (2008).

    Article  CAS  Google Scholar 

  42. Sakata, S. et al. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. Geochim. Cosmochim. Acta 61, 5379–5389 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Graham, J. E. & Bryant, D. A. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 190, 7966–7974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. French, K. L., Birdwell, J. E. & Berg, V. Biomarker similarities between the saline lacustrine Eocene Green River and the Paleoproterozoic Barney Creek Formations. Geochim. Cosmochim. Acta 274, 228–245 (2020).

    Article  CAS  Google Scholar 

  46. Smith, D. A., Steele, A., Bowden, R. & Fogel, M. L. Ecologically and geologically relevant isotope signatures of C, N, and S: okenone producing purple sulfur bacteria part I. Geobiology 13, 278–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, D. A., Steele, A. & Fogel, M. L. Pigment production and isotopic fractionations in continuous culture: okenone producing purple sulfur bacteria Part II. Geobiology 13, 292–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Posth, N. R. et al. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno. Geobiology 15, 798–816 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Sattley, W. M. et al. Complete genome of the thermophilic purple sulfur bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. Photosynthesis Res. 151, 125–142 (2021).

  50. Ohkouchi, N. et al. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments. Environ. Microbiol. 7, 1009–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hartgers, W. A., Schouten, S., Lopez, J. F., Damsté, J. S. S. & Grimalt, J. O. 13C-contents of sedimentary bacterial lipids in a shallow sulfidic monomictic lake (Lake Cisó, Spain). Org. Geochem. 31, 777–786 (2000).

    Article  CAS  Google Scholar 

  52. Schouten, S. et al. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochim. Cosmochim. Acta 65, 1629–1640 (2001).

    Article  CAS  Google Scholar 

  53. Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bryant, D. et al. in Functional Genomics and Evolution of Photosynthetic Systems Advances in Photosynthesis and Respiration Vol. 33 (eds Burnap, R. & Vermaas, W.) 47–102 (Springer, 2012).

  55. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Fakhraee, M., Hancisse, O., Canfield, D. E., Crowe, S. A. & Katsev, S. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).

    Article  CAS  Google Scholar 

  57. Johnston, D. T. et al. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochim. Cosmochim. Acta 72, 4278–4290 (2008).

    Article  CAS  Google Scholar 

  58. Hamilton, T. L. et al. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. Geobiology 12, 451–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wilbanks, E. G. et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ. Microbiol. 16, 3398–3415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sinninghe Damsté, J. S., Van Duin, A. C. T., Hollander, D., Kohnen, M. E. L. & De Leeuw, J. W. Early diagenesis of bacteriohopanepolyol derivatives: formation of fossil homohopanoids. Geochim. Cosmochim. Acta 59, 5141–5157 (1995).

    Article  Google Scholar 

  61. Birgel, D. et al. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org. Geochem. 37, 1289–1302 (2006).

    Article  CAS  Google Scholar 

  62. Brocks, J. J. et al. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Tang, T. et al. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically. Geobiology 15, 324–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Close, H. G., Bovee, R. & Pearson, A. Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass. Geobiology 9, 250–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Imhoff, J. F. in Sulfur Metabolism in Phototrophic Organisms Advances in Photosynthesis and Respiration Vol. 27 (eds Hell, R. et al.) 269–287 (Springer, 2008).

  67. Liu, Z. et al. ‘Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. 6, 1869–1882 (2012).

  68. Stamps, B. W., Corsetti, F. A., Spear, J. R. & Stevenson, B. S. Draft genome of a novel Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. Genome Announce. Genome Announce. 2, e00897-14 (2014).

    Article  Google Scholar 

  69. Hoffman, P. F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth. Sci. 28, 17–33 (1999).

    Article  CAS  Google Scholar 

  70. Crockford, P. W. et al. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–616 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).

    Article  Google Scholar 

  72. Page, R. W. & Sweet, I. P. Geochronology of basin phases in the western Mt Isa Inlier, and correlation with the McArthur Basin. Aust. J. Earth Sci. 45, 219–232 (1998).

    Article  CAS  Google Scholar 

  73. Bull, S. W. Sedimentology of the Palaeoproterozoic Barney Creek formation in DDH BMR McArthur 2, southern McArthur basin, northern territory. Aust. J. Earth Sci. 45, 21–31 (1998).

    Article  Google Scholar 

  74. Rawlings, D. J. Stratigraphic resolution of a multiphase intracratonic basin system: the McArthur Basin, northern Australia. Aust. J. Earth Sci. 46, 703–723 (1999).

    Article  Google Scholar 

  75. Jackson, M. J., Muir, M. D. & Plumb, K. A. Geology of the Southern McArthur Basin, Northern Territory Vol. 223 (Australian Government Pub. Service, 1987).

  76. Jarrett, A. J. M., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013).

    Article  CAS  Google Scholar 

  77. Jiang, A., Zhou, P., Sun, Y. & Xie, L. Rapid column chromatography separation of alkylnaphthalenes from aromatic components in sedimentary organic matter for compound specific stable isotope analysis. Org. Geochem. 60, 1–8 (2013).

    Article  Google Scholar 

  78. Ellis, L., Kagi, R. I. & Alexander, R. Separation of petroleum hydrocarbons using dealuminated mordenite molecular sieve. I. Monoaromatic hydrocarbons. Org. Geochem. 18, 587–593 (1992).

    Article  CAS  Google Scholar 

  79. Kelly, A. E., Love, G. D., Zumberge, J. E. & Summons, R. E. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Org. Geochem. 42, 640–654 (2011).

    Article  CAS  Google Scholar 

  80. Summons, R. E. & Powell, T. G. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim. Cosmochim. Acta 51, 557–566 (1987).

    Article  CAS  Google Scholar 

  81. Harris, D., Horwáth, W. R. & Van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon‐13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided via the Simons Foundation under the auspices of Simons Collaboration on the Origin of Life (grant no. 290361FY18 to R.E.S.). G.P.F. and M.M.P. were supported by the National Science Foundation Integrated Earth Systems award EAR (grant no. 1615426 to G.P.F). X.Z. was sponsored by the Shanghai Pujiang Programme. G.I. acknowledges receipt of a MISTI Global Seed Award. We recognize formative discussions with various members of the Summons Laboratory, particularly Benjamin Uveges who helped with provision of graphics. R.E.S. thanks the Hanse-Wissenschaftskolleg for support during the finalization of this report.

Author information

Authors and Affiliations

Authors

Contributions

R.E.S. conceived the study and secured the funding to support the research. G.P.F. and M.M.P. independently conducted the phylogenomic analysis. X.Z. developed and verified the analytical procedure, eradicating the UCM that allowed isotopic analysis of the BCF carotenoids. X.Z. collected the isotopic data with laboratory support from G.I. X.Z. wrote the initial draft of the paper after which all authors contributed.

Corresponding authors

Correspondence to Xiaowen Zhang or Roger E. Summons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Alexis Gilbert, Kliti Grice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Paoletti, M.M., Izon, G. et al. Late acquisition of the rTCA carbon fixation pathway by Chlorobi. Nat Ecol Evol 7, 1398–1407 (2023). https://doi.org/10.1038/s41559-023-02147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02147-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology