Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strategies to reduce the global carbon footprint of plastics

A Publisher Correction to this article was published on 10 May 2019

This article has been updated

Abstract

Over the past four decades, global plastics production has quadrupled1. If this trend were to continue, the GHG emissions from plastics would reach 15% of the global carbon budget by 20502. Strategies to mitigate the life-cycle GHG emissions of plastics, however, have not been evaluated on a global scale. Here, we compile a dataset covering ten conventional and five bio-based plastics and their life-cycle GHG emissions under various mitigation strategies. Our results show that the global life-cycle GHG emissions of conventional plastics were 1.7 Gt of CO2-equivalent (CO2e) in 2015, which would grow to 6.5 GtCO2e by 2050 under the current trajectory. However, aggressive application of renewable energy, recycling and demand-management strategies, in concert, has the potential to keep 2050 emissions comparable to 2015 levels. In addition, replacing fossil fuel feedstock with biomass can further reduce emissions and achieve an absolute reduction from the current level. Our study demonstrates the need for integrating energy, materials, recycling and demand-management strategies to curb growing life-cycle GHG emissions from plastics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global life-cycle GHG emissions of conventional plastics in 2015 by life-cycle stage and plastic type.
Fig. 2: Global life-cycle GHG emissions of plastics under scenarios of different feedstock sources, energy mixes, EoL management strategies and growth in plastics demand for 2015–2050.
Fig. 3: GHG-emissions breakdown by life-cycle stage of plastics derived from different feedstock types under two energy-mix scenarios in 2050.

Data availability

The authors declare that the main data supporting the findings of this study are available within the Letter and Supplementary Information. Additional data are available from the corresponding author on reasonable request.

Change history

  • 10 May 2019

    In the version of this Letter originally published, in Fig. 1 the label ‘PPA 159 Mt’ should have been ‘PP&A 159 Mt’. This has now been amended.

References

  1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  2. World Economic Forum The New Plastics Economy—Rethinking the Future of Plastics (Ellen MacArthur Foundation, McKinsey & Company, 2016).

  3. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  Google Scholar 

  4. Law, K. L. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9, 205–229 (2017).

    Article  Google Scholar 

  5. Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).

    Article  CAS  Google Scholar 

  6. Rochman, C. M. et al. Classify plastic waste as hazardous. Nature 494, 169–171 (2013).

  7. Lithner, D., Larsson, Å. & Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409, 3309–3324 (2011).

    Article  CAS  Google Scholar 

  8. Fischedick, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2014).

  9. Hillmyer, M. A. The promise of plastics from plants. Science 358, 868–870 (2017).

    Article  CAS  Google Scholar 

  10. Weiss, M. et al. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16, S169–S181 (2012).

    Article  CAS  Google Scholar 

  11. Yates, M. R. & Barlow, C. Y. Life cycle assessments of biodegradable, commercial biopolymers—a critical review. Resour. Conserv. Recycl. 78, 54–66 (2013).

    Article  Google Scholar 

  12. Chen, G.-Q. & Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 112, 2082–2099 (2012).

    Article  CAS  Google Scholar 

  13. Spierling, S. et al. Bio-based plastics—a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491 (2018).

    Article  Google Scholar 

  14. Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    Article  CAS  Google Scholar 

  15. Policies for Bioplastics in the Context of a Bioeconomy (OECD, 2013).

  16. A European Strategy for Plastics in a Circular Economy (European Commission, 2018).

  17. Bioplastics Market Data 2017 (European Bioplastics, 2017).

  18. Posen, I. D., Jaramillo, P., Landis, A. E. & Griffin, W. M. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ. Res. Lett. 12, 034024 (2017).

    Article  Google Scholar 

  19. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B 364, 2115–2126 (2009).

    Article  CAS  Google Scholar 

  20. Lazarevic, D., Aoustin, E., Buclet, N. & Brandt, N. Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 55, 246–259 (2010).

    Article  Google Scholar 

  21. Hottle, T. A., Bilec, M. M. & Landis, A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 98, 1898–1907 (2013).

    Article  CAS  Google Scholar 

  22. Olivier, J. G. J., Schure, K. M. & Peters, J. A. H. W. Trends in Global CO 2 and Total Greenhouse Gas Emissions: Summary of the 2017 Report (PBL Netherlands Environmental Assessment Agency, 2017).

  23. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  Google Scholar 

  24. Bing, X., Bloemhof-Ruwaard, J., Chaabane, A. & van der Vorst, J. Global reverse supply chain redesign for household plastic waste under the emission trading scheme. J. Clean. Prod. 103, 28–39 (2015).

    Article  Google Scholar 

  25. Soroudi, A. & Jakubowicz, I. Recycling of bioplastics, their blends and biocomposites: a review. Eur. Polym. J. 49, 2839–2858 (2013).

    Article  CAS  Google Scholar 

  26. Reddy, R. L., Reddy, V. S. & Gupta, G. A. Study of bio-plastics as green & sustainable alternative to plastics. Int. J. Emerg. Technol. Adv. Eng. 3, 82–89 (2013).

  27. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  28. European Reference Life Cycle Database (European Commission & JRC, 2018); https://eplca.jrc.ec.europa.eu/ELCD3/

  29. B. Bilitewski et al. (eds) Global Risk-Based Management of Chemical Additives II:Risk-Based Assessment and Management Strategies (Springer, 2013).

  30. Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers: Di-isononyl phthalate (DINP) (European Council for Plasticisers and Intermediates, 2015).

  31. Keoleian, G., Miller, S., De Kleine, R., Fang, A. & Mosley, J. Life Cycle Material Data Update for GREET Model (Center for Sustainable Systems, 2012).

  32. Life Cycle Inventory of Plastic Fabrication Processes: Injection Molding and Thermoforming (Franklin Associates, 2011).

  33. Madival, S., Auras, R., Singh, S. P. & Narayan, R. Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J. Clean. Prod. 17, 1183–1194 (2009).

    Article  CAS  Google Scholar 

  34. Thomas, B., Fishwick, M., Joyce. J., & Santen A.V. A Carbon Footprint for UK Clothing and Opportunities for Savings (The Waste and Resources Action Programme, 2012).

  35. Life Cycle Inventory of 100% Postconsumer HDPE and PET Recycled Resin from Postconsumer Containers and Packaging (Franklin Associates, 2010).

  36. Lovett, J. Sustainable Sourcing of Feedstocks for Bioplastics (Corbion Group Netherlands B.V., 2016).

  37. Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the life cycle greenhouse gas emissions from U.S. production of three biobased polymer families. Environ. Sci. Technol. 50, 2846–2858 (2016).

    Article  CAS  Google Scholar 

  38. Rossi, V. et al. Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J. Clean. Prod. 86, 132–145 (2015).

    Article  Google Scholar 

  39. Liptow, C. & Tillman, A.-M. A Comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J. Ind. Ecol 16, 420–435 (2012).

    Article  CAS  Google Scholar 

  40. Tsiropoulos, I. et al. Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J. Clean. Prod. 90, 114–127 (2015).

    Article  CAS  Google Scholar 

  41. Shen, L. & Patel, M. K. Life cycle assessment of polysaccharide materials: a review. J. Polym. Environ. 16, 154 (2008).

    Article  CAS  Google Scholar 

  42. Groot, W. J. & Borén, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Assess. 15, 970–984 (2010).

    Article  CAS  Google Scholar 

  43. Harding, K. G., Dennis, J. S., von Blottnitz, H. & Harrison, S. T. L. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 130, 57–66 (2007).

    Article  CAS  Google Scholar 

  44. Tsiropoulos, I. et al. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int. J. Life Cycle Assess. 19, 1049–1067 (2014).

    Article  CAS  Google Scholar 

  45. Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X. & Auras, R. Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107, 333–366 (2016).

    Article  CAS  Google Scholar 

  46. Lim, L.-T., Auras, R. & Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820–852 (2008).

    Article  CAS  Google Scholar 

  47. Hermann, B. G., Debeer, L., De Wilde, B., Blok, K. & Patel, M. K. To compost or not to compost: Carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab 96, 1159–1171 (2011).

    Article  CAS  Google Scholar 

  48. Shen, L., Haufe, J. & Patel, M. K. Product Overview and Market Projection of Emerging Bio-based Plastics (Utrecht Univ., 2009).

  49. Ashter, S. A. in Introduction to Bioplastics Engineering (ed. Ashter, S. A.) 227–249 (William Andrew Publishing, 2016).

  50. Luckachan, G. E. & Pillai, C. K. S. Biodegradable polymers- a review on recent trends and emerging perspectives. J. Polym. Environ. 19, 637–676 (2011).

    Article  CAS  Google Scholar 

  51. Babu, R. P., O’Connor, K. & Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater 2, 8 (2013).

    Article  Google Scholar 

  52. Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110, 621–632 (2010).

    Article  CAS  Google Scholar 

  53. Wang, X.-L., Yang, K.-K. & Wang, Y.-Z. Properties of starch blends with biodegradable. Polymers. J. Macromol. Sci. Part C 43, 385–409 (2003).

    Article  CAS  Google Scholar 

  54. Broeren, M. L. M., Kuling, L., Worrell, E. & Shen, L. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resour. Conserv. Recycl. 127, 246–255 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the US Environmental Protection Agency's Science to Achieve Results Program under Grant No. 83557907. We also acknowledge UCSB Mellichamp Sustainability Fellowship and the Technology Management Program Young Innovator Scholarship for financial aid. We thank Y. Qin, E. Wall and Y. Ren (at University of California Santa Barbara) for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. performed the research and analysed the data. S.S. conceived the idea and designed the study. Both authors wrote the manuscript.

Corresponding author

Correspondence to Sangwon Suh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Climate Change thanks Hans Josef Endres, Ola Eriksson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–12 and Supplementary references

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 9, 374–378 (2019). https://doi.org/10.1038/s41558-019-0459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0459-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing