Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNAs undergo phase transitions with lower critical solution temperatures

Abstract

Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature-controlled phase separation of RNA homopolymers.
Fig. 2: Desolvation and Mg2+-induced bridging leads to compaction of individual poly(P) chains.
Fig. 3: Heat-induced PSCP of CAG repeat RNAs.
Fig. 4: Purine-to-uracil substitution suppresses LCST-type phase separation and percolation of repeat RNAs.
Fig. 5: Phase behaviour of RPRs.
Fig. 6: Phase separation inhibits the activity of Pfu RPR.

Similar content being viewed by others

Data availability

All data supporting this study are included in the Article and/or the Supplementary Information. Source data are provided with this paper.

References

  1. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).

  6. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175 (2016).

  7. Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171 (2017).

  12. Nakamura, H. et al. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. Nat. Mater. 17, 79–89 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Zhao, E. M. et al. Light-based control of metabolic flux through assembly of synthetic organelles. Nat. Chem. Biol. 15, 589–597 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).

  15. Lin, Y.-H., Forman-Kay, J. D. & Chan, H. S. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117, 178101 (2016).

    Article  PubMed  Google Scholar 

  16. Alshareedah, I., Moosa, M. M., Raju, M., Potoyan, D. A. & Banerjee, P. R. Phase transition of RNA−protein complexes into ordered hollow condensates. Proc. Natl Acad. Sci. USA 117, 15650–15658 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  PubMed  CAS  Google Scholar 

  19. Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45, 764–778 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. 129, 11512–11517 (2017).

    Article  Google Scholar 

  21. Eisenberg, H. & Felsenfeld, G. Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. J. Mol. Biol. 30, 17–37 (1967).

    Article  PubMed  CAS  Google Scholar 

  22. Pullara, P., Alshareedah, I. & Banerjee, P. R. Temperature-dependent reentrant phase transition of RNA–polycation mixtures. Soft Matter 18, 1342–1349 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fay, M. M. & Anderson, P. J. The role of RNA in biological phase separations. J. Mol. Biol. 430, 4685–4701 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Guo, Q., Shi, X. & Wang, X. RNA and liquid–liquid phase separation. Noncoding RNA Res. 6, 92–99 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Polymenidou, M. The RNA face of phase separation. Science 360, 859–860 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. Saha, S. & Hyman, A. A. RNA gets in phase. J. Cell Biol. 216, 2235–2237 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Ma, Y. et al. Nucleobase clustering contributes to the formation and hollowing of repeat-expansion RNA condensate. J. Am. Chem. Soc. 144, 4716–4720 (2022).

    Article  PubMed  CAS  Google Scholar 

  32. Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tolokh, I. S. et al. Why double-stranded RNA resists condensation. Nucleic Acids Res. 42, 10823–10831 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fay, M. M., Anderson, P. J. & Ivanov, P. ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Reports 21, 3573–3584 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Zhang, Y. et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746–11754 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Choi, J.-M., Hyman, A. A. & Pappu, R. V. Generalized models for bond percolation transitions of associative polymers. Phys. Rev. E 102, 042403 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  PubMed  CAS  Google Scholar 

  39. Futscher, M. H., Philipp, M., Müller-Buschbaum, P. & Schulte, A. The role of backbone hydration of poly(N-isopropyl acrylamide) across the volume phase transition compared to its monomer. Sci. Rep. 7, 17012 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Halperin, A., Kröger, M. & Winnik, F. M. Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew. Chem. Int. Ed. 54, 15342–15367 (2015).

    Article  CAS  Google Scholar 

  41. Tanaka, F. Theoretical study of molecular association and thermoreversible gelation in polymers. Polym. J. 34, 479–509 (2002).

    Article  CAS  Google Scholar 

  42. Tanaka, F. In Molecular Gels: Materials with Self-Assembled Fibrillar Networks (eds. R.G. Weiss and P. Terech) 17–78 (Springer, 2006).

  43. Tanaka, F. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  44. Rubinstein, M. & Dobrynin, A. V. Solutions of associative polymers. Trends in Polymer Science 5, 181–186 (1997).

    CAS  Google Scholar 

  45. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

  46. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bhandari, K., Cotten, M. A., Kim, J., Rosen, M. K. & Schmit, J. D. Structure–function properties in disordered condensates. J. Phys. Chem. B 125, 467–476 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bevilacqua, P. C., Williams, A. M., Chou, H.-L. & Assmann, S. M. RNA multimerization as an organizing force for liquid–liquid phase separation. RNA 28, 16–26 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).

    Article  PubMed  Google Scholar 

  50. Puglisi, J. D. & Tinoco, I. Jr. In Methods in Enzymology (eds. J.E. Dahlberg and J.N. Abelson) Vol. 180, 304–325 (Elsevier, 1989).

  51. Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wienken, C. J., Baaske, P., Duhr, S. & Braun, D. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res. 39, e52 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article  CAS  Google Scholar 

  55. Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941).

    Article  CAS  Google Scholar 

  56. Ranganathan, S. & Shakhnovich, E. I. Dynamic metastable long-living droplets formed by sticker-spacer proteins. Elife 9, e56159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Onuchic, P. L., Milin, A. N., Alshareedah, I., Deniz, A. A. & Banerjee, P. R. Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Sci. Rep. 9, 12161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ruff, K. M., Roberts, S., Chilkoti, A. & Pappu, R. V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 430, 4619–4635 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Ellis, K. J. & Morrison, J. F. In Methods in Enzymology (ed. D.L. Purich) Vol. 87, 405–426 (Elsevier, 1982).

  62. Zeng, X., Holehouse, A. S., Chilkoti, A., Mittag, T. & Pappu, R. V. Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. Biophys. J. 119, 402–418 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zeng, X. et al. Design of intrinsically disordered proteins that undergo phase transitions with lower critical solution temperatures. APL Mater. 9, 021119 (2021).

    Article  CAS  Google Scholar 

  64. Amin, A. N., Lin, Y.-H., Das, S. & Chan, H. S. Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. J. Phys. Chem. B 124, 6709–6720 (2020).

    Article  PubMed  CAS  Google Scholar 

  65. Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lin, Y.-H. & Chan, H. S. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112, 2043–2046 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. May, S., Iglič, A., Reščič, J., Maset, S. & Bohinc, K. Bridging like-charged macroions through long divalent rodlike ions. J. Phys. Chem. B 112, 1685–1692 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Fossat, M. J., Zeng, X. & Pappu, R. V. Uncovering differences in hydration free energies and structures for model compound mimics of charged side chains of amino acids. J. Phys. Chem. B 125, 4148–4161 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zeng, X., Ruff, K. M. & Pappu, R. V. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 119, e2200559119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nguyen, H. T., Hori, N. & Thirumalai, D. Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nat. Chem. 14, 775–785 (2022).

  71. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, e30294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rubinstein, M. & Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386–1397 (1998).

    Article  CAS  Google Scholar 

  73. Phan, H.-D., Lai, L. B., Zahurancik, W. J. & Gopalan, V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem. Sci. 46, 976–991 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gopalan, V., Vioque, A. & Altman, S. RNase P: variations and uses. J. Biol. Chem. 277, 6759–6762 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  PubMed  CAS  Google Scholar 

  76. Cho, I.-M., Lai, L. B., Susanti, D., Mukhopadhyay, B. & Gopalan, V. Ribosomal protein L7Ae is a subunit of archaeal RNase P. Proc. Natl Acad. Sci. USA 107, 14573–14578 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Phan, H.-D. et al. Elucidation of structure–function relationships in Methanocaldococcus jannaschii RNase P, a multi-subunit catalytic ribonucleoprotein. Nucleic Acids Res. 50, 8154–8167 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pulukkunat, D. K. & Gopalan, V. Studies on Methanocaldococcus jannaschii RNase P reveal insights into the roles of RNA and protein cofactors in RNase P catalysis. Nucleic Acids Res. 36, 4172–4180 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tsai, H.-Y., Pulukkunat, D. K., Woznick, W. K. & Gopalan, V. Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc. Natl Acad. Sci. USA 103, 16147–16152 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wan, F. et al. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Nat. Commun. 10, 2617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Marathe, I. A. et al. Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Res. 49, 9444–9458 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Loughrey, D., Watters, K. E., Settle, A. H. & Lucks, J. B. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res. 42, e165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Denesyuk, N. A. & Thirumalai, D. Coarse-grained model for predicting RNA folding thermodynamics. J. Phys. Chem. B 117, 4901–4911 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Buchmueller, K. L. & Weeks, K. M. Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies. Nucleic Acids Res. 32, e184 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Iglesias-Artola, J. M. et al. Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nat. Chem. 14, 407–416 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Higgs, P. G. & Lehman, N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wiedner, H. J. & Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465–473 (2021).

    Article  PubMed  CAS  Google Scholar 

  90. Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cheng, Y. et al. Increased Alu RNA processing in Alzheimer brains is linked to gene expression changes. EMBO Rep. 22, e52255 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lin, C.-L. G. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602 (1998).

    Article  PubMed  CAS  Google Scholar 

  93. Tank, E. M. et al. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat. Commun. 9, 2845 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tsai, H.-Y., Lai, L. B. & Gopalan, V. A modified pBluescript-based vector for facile cloning and transcription of RNAs. Anal. Biochem. 303, 214–217 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sousa da Silva, A. W. & Vranken, W. F. ACPYPE—antechamber Python parser interface. BMC Res. Notes 5, 367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vanquelef, E. et al. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  99. Duan, Y. et al. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

    Article  PubMed  CAS  Google Scholar 

  100. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  101. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  102. Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    Article  CAS  Google Scholar 

  103. Steinbrecher, T., Latzer, J. & Case, D. Revised AMBER parameters for bioorganic phosphates. J. Chem. Theory Comput. 8, 4405–4412 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bergonzo, C. & Cheatham, T. E. III Improved force field parameters lead to a better description of RNA structure. J. Chem. Theory Comput. 11, 3969–3972 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Grotz, K. K., Cruz-León, S. & Schwierz, N. Optimized magnesium force field parameters for biomolecular simulations with accurate solvation, ion-binding, and water-exchange properties. J. Chem. Theory Comput. 17, 2530–2540 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  107. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  108. Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In International Conference on Exascale Applications and Software 2014 (eds. S. Markidis and E. Laure) 3–27 (Springer, 2014).

  109. GROMACS 2021 manual. GROMACS development team https://doi.org/10.5281/zenodo.4457591 (2021).

  110. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  111. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  112. Nosé, S. & Klein, M. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

    Article  Google Scholar 

  113. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  114. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  115. Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  116. Zgarbová, M. et al. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ferrenberg, A. M. & Swendsen, R. H. Optimized Monte Carlo data analysis. Comput. Phys. 3, 101–104 (1989).

    Article  Google Scholar 

  118. Gallicchio, E., Andrec, M., Felts, A. K. & Levy, R. M. Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 109, 6722–6731 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (R35 GM138186 to P.R.B., GM120582 to V.G.), the Air Force Office of Scientific Research (FA9550-20-1-0241 to R.V.P.), the St. Jude Research Collaborative on Biophysics of RNP granules (to P.R.B. and R.V.P.) and the Henry M. Jackson Foundation for the Advancement of Military Medicine (USUHS subaward 5516 to V.G.). W.J.Z. gratefully acknowledges a Pelotonia postdoctoral fellowship from the OSU Comprehensive Cancer Center. The authors acknowledge members of the Banerjee, Gopalan and Pappu labs for valuable discussions during different stages of the manuscript preparation. X.Z. thanks A. A. Chen and F.-Y. Dupradeau for helpful discussions on the forcefield parameters used in this work, and S. Tahan for support in the use of the RIS cluster at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Contributions

P.R.B. conceived the idea for this study. P.R.B. and G.M.W. designed the study with input from L.B.L., W.J.Z., V.G., X.Z. and R.V.P. G.M.W. performed the RNA phase separation experiments and data analysis with assistance from P.P. L.B.L, V.S. and W.J.Z. synthesized the different RNAs and modified them with fluorescent labels. W.J.Z. performed all the RNase P activity experiments. X.Z. and R.V.P. performed the all-atom molecular dynamics simulations, analysed the results and developed the framework to explain the observed phenomenology. All authors contributed to the writing and revision of the paper.

Corresponding authors

Correspondence to Rohit V. Pappu, Venkat Gopalan or Priya R. Banerjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Hue Sun Chan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phase separation of homopolymeric RNAs.

(a) A schematic of temperature-controlled microscopy assay to probe RNA phase separation. (b) Phase separation and arrest of poly(rA) upon heating. Brightfield images of 1.5 mg/ml−1 poly(rA) in 25 mM Tris-HCl (pH 7.5 at 25 °C), 5 mM MgCl2 (25T-5M buffer) during heating (red arrow) and cooling (cyan arrow) as indicated; observed LCPT of this sample is 39.3 ± 8.5 °C. Upon cooling, poly(rA) droplets did not dissolve. (c) Brightfield images of 1.5 mg/ml−1 poly(rG) in 25 mM Tris-HCl (pH 7.5 at 25 °C), 1 mM MgCl2 (25T-1M buffer) at two different temperatures. Extensive irreversible aggregation is evident. (d) LCST-type phase separation of poly(P). Brightfield images of 1.5 mg/ml−1 poly(P) in 25 mM Tris-HCl (pH 7.5 at 25 °C), 250 mM MgCl2 (25T-250M buffer) during heating (red arrow) and cooling (cyan arrow) as indicated; observed LCPT of this sample is 35.3 ± 5.0 °C. Buffer notation used: the number in front of ‘T’ indicates [Tris-HCl] and the number in front of ‘M’ indicates [Mg2+] in mM in each buffer. Error bars represent s.e.m. for n = 3 replicates.

Extended Data Fig. 2 An emerging model for RNA phase separation coupled percolation (PSCP) behaviour.

(a) The observed hierarchy of LCST-type phase transition propensity of RNA bases and the phosphate backbone. (b) An enthalpic model of RNA phase separation. Here, RNA in an ensemble of minimum free energy structures (left) is heated, thereby denaturing the RNA. Subsequent cooling below Tph should enable the RNA to undergo a UCST transition. This model implies that enthalpic interactions such as hydrogen bonding and base-stacking drive RNA phase separation. (c) PSCP model of RNA condensation. In this model desolvation entropy drives the self-association of RNA to form phase-separated condensates upon heating. During subsequent cooling, the rank order of the phase separation temperature (LCPT or Tph) and the percolation temperature (Tprc) determines refolding vs. condensate arrest. When Tph>Tprc, the system undergoes reversible phase separation whereas in cases of Tph< Tprc, the system shows hysteretic phase behaviour. Our experimental and computational results clearly show that RNA condensation proceeds via this pathway.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1 and 2, legends for Videos 1–19 and references.

Reporting Summary

Supplementary Video 1

Phase separation of poly(rU). A sample of 1.5 mg ml−1 poly(rU) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 400 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy. The poly(rU) phase separated reversibly with a UCPT of 24.2 ± 0.5 °C and an LCPT of 1.1 ± 0.3 °C (n = 3 replicates).

Supplementary Video 2

Phase separation of poly(rU). A sample of 1.5 mg ml−1 poly(rU) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 500 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy. The poly(rU) phase separated reversibly with a UCPT of 25.2 ± 1.2 °C (n = 3 replicates) and no LCST was observed.

Supplementary Video 3

Phase separation of poly(rC). A sample of 1.5 mg ml−1 poly(rC) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 100 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy. The poly(rC) phase separated reversibly with an LCPT of 57.6 ± 1.9 °C (n = 3 replicates).

Supplementary Video 4

Phase separation of poly(rA). A sample of 1.5 mg ml−1 poly(rA) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 5 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy going to 80 °C. The poly(rA) phase separated irreversibly with an LCPT of 39.3 ± 8.5 °C (n = 3 replicates).

Supplementary Movie 5

Phase separation of poly(rA). A sample of 1.5 mg ml−1 poly(rA) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 5 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy going to 34 °C. The poly(rA) phase separated irreversibly with an LCPT of 32.7 °C in this trial.

Supplementary Video 6

Thermal cycling of poly(rG). A sample of 1.5 mg ml−1 poly(rG) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 1 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy going to 80 °C. The poly(rG) remained aggregated at all temperatures.

Supplementary Video 7

Movie 7. Phase separation of poly(P). A sample of 1.5 mg ml−1 poly(P) in 25 mM Tris-HCl (pH 7.5 at 25 °C) and 250 mM Mg2+ underwent thermal cycling via temperature-controlled microscopy. The poly(P) phase separated with an LCPT of 35.3 ± 5.0 °C (n = 3 replicates).

Supplementary Video 8

Phase separation of (CAG)31 RNA. A sample of 10 µM (CAG)31 in 25 mM Tris-HCl (pH 7.5 at 25 °C), 10 mM Mg2+ and 10 mM Na+ underwent thermal cycling via temperature-controlled microscopy. Observed LCPT = 66.8 ± 3.9 °C (n = 3 replicates).

Supplementary Video 9

Dynamic arrest via percolation of (CAG)31 RNA upon phase separation. A sample of 100 µM (CAG)31 in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C), 50 mM Mg2+ and 25 mM Na+ underwent phase separation at 38.0 ± 3.5 °C (n = 3 replicates) followed by the formation of an extensive percolated network of aspherical droplets. These droplets relaxed and merged into spherical droplets as the temperature was increased to 80 °C.

Supplementary Video 10

Rapid fusion of (CAG)31 droplets. A sample of 50 µM (CAG)31 phase separated at 41.1 ± 1.7 °C in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+. The droplets underwent rapid shape relaxation through coalescence as the temperature was increased above 60 °C.

Supplementary Video 11

Dissolution of (CAG)31 droplets upon addition of EDTA. A sample of 10 µM (CAG)31 RNA underwent annealing in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+. The droplets dissolved upon the addition of a small volume of 500 mM EDTA from the left of the imaging area.

Supplementary Video 12

Phase separation and arrest of a scrambled (CAG)31 sequence. A sample of 50 µM scrambled (CAG)31 is shown in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C), 50 mM Mg2+ and 25 mM Na+. An irreversible phase transition was observed with an LCPT at 57.9 ± 4.2 °C (n = 3 replicates).

Supplementary Video 13

Phase separation and arrest of (CAG)20. A sample of 155 µM (CAG)20 was prepared in 10 mM Tris-HCl (pH 7.5 at 25 °C) and 200 mM Mg2+. Irreversible phase separation was observed at 59.9 ± 2.3 °C (n = 3 replicates).

Supplementary Video 14

Reversible phase separation of (CUG)31. A sample of 50 µM (CUG)31 RNA underwent thermal cycling with an LCPT of 72.7 ± 5.4 °C in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C), 50 mM Mg2+ and 25 mM Na+. The droplets dissolved after crossing the LCPT as the temperature decreased. The same conditions for (CAG)31 resulted in irreversible droplet formation.

Supplementary Video 15

Absence of phase separation for (CUU)31. A sample of 50 µM (CUU)31 RNA underwent thermal cycling in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C), 50 mM Mg2+ and 25 mM Na+. No phase separation was observed.

Supplementary Video 16

Phase separation and percolation of Pfu RNase P RNA. A sample of 10 µM Pfu RPR was imaged in a buffer containing 50 mM HEPES–KOH (pH 7.5 at 25 °C) and 50 mM Mg2+. Irreversible phase separation was observed at 68.2 ± 1.3 °C (n = 3 replicates).

Supplementary Video 17

Phase separation and percolation of Mja RNase P RNA. A sample of 10 µM Mja RPR was imaged in a buffer containing 50 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+. Irreversible phase separation was observed at 65.9 ± 3.2 °C (n = 3 replicates).

Supplementary Video 18

Phase separation and percolation of Mma RNase P RNA. A sample of 10 µM Mma RPR was imaged in a buffer containing 50 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+. Irreversible phase separation was observed at 54.2 ± 0.9 °C (n = 3 replicates).

Supplementary Video 19

Melting of arrested Pfu RPR droplets. Droplets were prepared via annealing in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C), 25 mM Mg2+ and 10 mM Na+. The arrested Pfu RPR droplets then underwent thermal cycling via temperature-controlled microscopy showing the subsequent relaxation of the Pfu RPR condensates into spherical droplets.

Supplementary Video 20

FRAP of Pfu RPR. A sample of 10 µM Pfu RPR with 10 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+ was used for FRAP experiments (see Methods for additional details).

Supplementary Video 21

FRAP of Mja RPR. A sample of 10 µM Mja RPR with 10 mM Tris-HCl (p 7.5 at 25 °C) and 50 mM Mg2+ was used for FRAP experiments (see Methods for additional details).

Supplementary Video 22

FRAP of Mma RPR. A sample of 10 µM Mma RPR with 10 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+ was used for FRAP experiments (see Methods for additional details).

Supplementary Video 23

Reversible phase separation of Mja RPR in a refolding buffer. A sample of 20 µM RNA was prepared via a refolding protocol and diluted into refolding buffer containing 50 mM HEPES–KOH (pH 8.0 at 25 °C), 10 mM Mg2+ and 800 mM AmAc upon reaching 37 °C. Reversible phase separation was observed with an LCPT of 86.3 ± 3.1 °C (n = 3 replicates).

Supplementary Video 24

Reversible phase separation of Mma RPR in a refolding buffer. A sample of 20 µM RNA was prepared via a refolding protocol and diluted into refolding buffer containing 50 mM Tris-HCl (pH 7.5 at 25 °C), 7.5 mM Mg2+ and 500 mM AmAc upon reaching 37 °C. Reversible phase separation was observed with an LCPT of 49.2 ± 3.2 °C (n = 3 replicates).

Supplementary Video 25

Absence of an apparent phase separation of Pfu RPR in a refolding buffer. A sample of 20 µM RNA was prepared via a refolding protocol and diluted into refolding buffer containing working concentrations of 50 mM HEPES–KOH (pH 8.4 at 25 °C), 10 mM Mg2+ and 800 mM AmAc upon reaching 37 °C.

Supplementary Video 26

Absence of an apparent phase separation of Pfu RPR in a refolding buffer. A sample of 2.5 µM Pfu RPR was prepared in a buffer containing 50 mM HEPES–KOH (pH 7.5 at 25 °C), 10 mM Mg2+ and 800 mM AmAc. The sample was heated to 80 °C.

Supplementary Video 27

Phase separation of Pfu RPR in the activity assay buffer. A sample of 0.625 µM RNA was diluted into buffer containing working concentrations of 50 mM HEPES–KOH (pH 7.5 at 55 °C) and 500 mM Mg2+. During thermal cycling via temperature-controlled microscopy, irreversible phase separation was observed with an LCPT of 70.6 ± 2.6 °C (n = 3 replicates).

Supplementary Video 28

Phase separation of Pfu RPR in the activity assay buffer. A sample of 0.625 µM Pfu RPR was diluted into buffer containing working concentrations of 50 mM HEPES–KOH (pH 7.5 at 55 °C), 500 mM Mg2+ and 2 M AmAc. No phase separation was observed during thermal cycling via temperature-controlled microscopy (n = 3 replicates).

Supplementary Video 29

Phase separation of (CAG)31 RNA in the presence of dimethylsulfoxide (DMSO). A sample of 10 µM (CAG)31 RNA underwent thermal cycling in a buffer containing 10 mM Tris-HCl (pH 7.5 at 25 °C) and 50 mM Mg2+, with the addition of 5% (v/v) DMSO.

Supplementary Code 1

P values and significance for Pfu turnover assay.

Supplementary Data 1

Supplementary Information source data simulations as delimited text files.

Supplementary Data 2

Source data for Supplementary Information figures, for example, statistical source data.

Supplementary Data 3

Raw gel data.

Supplementary Data 4

Raw gel data.

Supplementary Data 5

Source data simulations for Fig. 2.

Source data

Source Data Figs. 1–6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadsworth, G.M., Zahurancik, W.J., Zeng, X. et al. RNAs undergo phase transitions with lower critical solution temperatures. Nat. Chem. 15, 1693–1704 (2023). https://doi.org/10.1038/s41557-023-01353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01353-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing