Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organocatalytic asymmetric deoxygenation of sulfones to access chiral sulfinyl compounds

Abstract

Over the past decades, many efficient methodologies have been developed that allow for the enantioselective synthesis of chiral sulfinyl compounds. However, the enantioselective deoxygenation of hexavalent sulfones for the formation of chiral sulfinyl compounds still remains one of the major challenges in the fields of asymmetric synthesis and organosulfur chemistry. Here we have demonstrated that a synergistic combination of organocatalysis and the incorporation of a cyano group into the sulfone generates a chiral sulfinic species as an active intermediate. A wide range of chiral sulfinates with high enantioselectivities could then be acquired using alcohols as nucleophiles, and the subsequent transformations allowed the collective preparation of a variety of chiral sulfinyl compounds. Density functional theory calculations revealed that the catalytic cycle involves a quinuclidine-assisted stepwise 1,2-cyano group transfer, base-assisted intermolecular substitution with alcohol and regeneration of the active catalyst. The enantioselectivity was determined by the cyano migration step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enantioselective deoxygenation of sulfones and our design blueprint.
Fig. 2: Reaction design and plausible mechanism.
Fig. 3: Investigation of the reaction mechanism.
Fig. 4: Synthetic transformations.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study, including experimental procedures and compound characterization, NMR and HPLC are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 1941245 (P3e), 2141490 ((R)-5) and 2141488 ((S)-11). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Tian, S.-K. et al. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res. 37, 621–631 (2004).

    Article  CAS  Google Scholar 

  2. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  Google Scholar 

  3. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  Google Scholar 

  4. List, B. (ed) Asymmetric Organocatalysis, Topics in Current Chemistry Vol. 291 (Springer, 2009).

  5. Bertelsen, S. & Jørgensen, K. A. Organocatalysis—after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009).

    Article  CAS  Google Scholar 

  6. Song, C. E. (ed.) Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis (Wiley-VCH, 2009).

  7. Yan, W., Zheng, M., Xu, C. & Chen, F.-E. Harnessing noncovalent interaction of chalcogen bond in organocatalysis: from the catalyst point of view. Green Synth. Catal. 2, 329–336 (2021).

    Article  Google Scholar 

  8. Drabowicz, J. Stereochemistry of organic sulfur compounds: More than 100 years of history, current state and further challenges. Phosphorus, Sulfur Silicon Relat. Elem. 192, 145–148 (2017).

    Article  CAS  Google Scholar 

  9. Wang, M. & Jiang, X. Prospects and challenges in organosulfur chemistry. ACS Sustain. Chem. Eng. 10, 671–677 (2022).

    Article  CAS  Google Scholar 

  10. Evans, J. W., Fierman, M. B., Miller, S. J. & Ellman, J. A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc. 126, 8134–8135 (2004).

    Article  CAS  Google Scholar 

  11. Shibata, N. et al. Cinchona alkaloid/sulfinyl chloride combinations: enantioselective sulfinylating agents of alcohols. J. Am. Chem. Soc. 127, 1374–1375 (2005).

    Article  CAS  Google Scholar 

  12. Tilby, M. J., Dewez, D. F., Hall, A., Lamenca, C. M. & Willis, M. C. Exploiting configurational lability in aza-sulfur compounds for the organocatalytic enantioselective synthesis of sulfonimidamides. Angew. Chem. Int. Ed. 60, 25680–25687 (2021).

    Article  CAS  Google Scholar 

  13. Tang, Y. & Miller, S. J. Catalytic enantioselective synthesis of pyridyl sulfoximines. J. Am. Chem. Soc. 143, 9230–9235 (2021).

    Article  CAS  Google Scholar 

  14. Fang, S. et al. Access to S-stereogenic free sulfoximines via bifunctional phosphonium salt-catalyzed desymmetrization of bisphenols. ACS Catal. 11, 13902–13912 (2021).

    Article  CAS  Google Scholar 

  15. Zhang, X., Ang, E. C. X., Yang, Z., Kee, C. W. & Tan, C.-H. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 604, 298–303 (2022).

    Article  CAS  Google Scholar 

  16. Jia, T. et al. Palladium-catalyzed enantioselective arylation of aryl sulfenate anions: a combined experimental and computational study. J. Am. Chem. Soc. 139, 8337–8345 (2017).

    Article  CAS  Google Scholar 

  17. Wang, L., Chen, M., Zhang, P., Li, W. & Zhan, J. Palladium/PC-Phos-catalyzed enantioselective arylation of general sulfenate anions: scope and synthetic applications. J. Am. Chem. Soc. 140, 3467–3473 (2018).

    Article  CAS  Google Scholar 

  18. Mikołajczyk, M. & Drabowicz, J. in Topics in Stereochemistry Vol. 13 (eds Allinger, N. L. et al.) 333–468 (Wiley, 1982).

  19. Mikołajczyk, M., Drabowicz, J. & Kiełbasiński, P. Chiral Sulfur Reagents: Applications in Asymmetric and Stereoselective Synthesis (CRC Press, 1997).

  20. Page, P. C. B. (ed.) Organosulfur Chemistry: Synthetic and Stereochemical Aspects (Academic Press, 1998).

  21. Toru, T. & Bolm, C. (eds) Organosulfur Chemistry in Asymmetric Synthesis (Wiley-VCH, 2008).

  22. Kagan, H. B. & Luukas, T. O. in Transition Metals for Organic Synthesis (eds Beller, M. & Bolm, C.) 479–495 (Wiley-VCH, 2004).

  23. Fernández, I. & Khiar, N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3705 (2003).

    Article  Google Scholar 

  24. Wojaczyńska, E. & Wojaczyński, J. Enantioselective synthesis of sulfoxides: 2000–2009. Chem. Rev. 110, 4303–4356 (2010).

    Article  Google Scholar 

  25. Han, J., Soloshonok, V. A., Klika, K. D., Drabowicz, J. & Wzorek, A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev. 47, 1307–1350 (2018).

    Article  CAS  Google Scholar 

  26. Wojaczyńska, E. & Wojaczyński, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).

    Article  Google Scholar 

  27. Yang, L., Wang, B., Yin, X. & Zeng, Q. Advances of sulfenate anions in catalytic asymmetric synthesis of sulfoxides. Chem. Rec. 21, e202100242 (2022).

    Google Scholar 

  28. Magnus, P. D. Recent developments in sulfone chemistry. Tetrahedron 33, 2019–2045 (1977).

    Article  CAS  Google Scholar 

  29. Patai, S. et al. (eds) The Chemistry of Sulphones and Sulphoxides (Wiley, 1988).

  30. Whitham, G. H. (ed.) Organosulfur Chemistry (Oxford Univ. Press, 1995).

  31. Liu, N.-W., Liang, S. & Manolikakes, G. Recent advances in the synthesis of sulfones. Synthesis 48, 1939–1973 (2016).

    Article  CAS  Google Scholar 

  32. Jiang, X. (ed.) Sulfur Chemistry (Springer, 2018).

  33. Firouzabadi, H. & Jamalian, A. Reduction of oxygenated organosulfur compounds. J. Sulfur Chem. 29, 53–97 (2008).

    Article  CAS  Google Scholar 

  34. Carreño, M. C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev. 95, 1717–1760 (1995).

    Article  Google Scholar 

  35. Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 34, 609–624 (2005).

    Article  CAS  Google Scholar 

  36. Legros, J., Dehli, J. R. & Bolm, C. Applications of catalytic asymmetric sulfide oxidations to the syntheses of biologically active sulfoxides. Adv. Synth. Catal. 347, 19–31 (2005).

    Article  CAS  Google Scholar 

  37. Zeng, Q., Gao, S. & Chelashaw, A. K. Advances in titanium-catalyzed synthesis of chiral sulfoxide drugs. Mini-Rev. Org. Chem. 10, 198–206 (2013).

    Article  CAS  Google Scholar 

  38. Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 107, 5133–5209 (2007).

    Article  CAS  Google Scholar 

  39. Sipos, G., Drinkel, E. E. & Dorta, R. The emergence of sulfoxides as efficient ligands in transition metal catalysis. Chem. Soc. Rev. 44, 3834–3860 (2015).

    Article  CAS  Google Scholar 

  40. Trost, B. M. & Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 5026–5043 (2015).

    Article  CAS  Google Scholar 

  41. Otocka, S., Kwiatkowska, M., Madalińska, L. & Kiełbasiński, P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis. Chem. Rev. 117, 4147–4181 (2017).

    Article  CAS  Google Scholar 

  42. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  43. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  44. McLean, A. D. & Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648 (1980).

    Article  CAS  Google Scholar 

  45. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  46. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (grants: 2021CDJQY-035 to W.Q. and 2022CDJXY-025 to S.H.), the National Natural Science Foundation of China (grants: 21901026 to W.Q. and 21922101 to H.Y.) and the Natural Science Foundation of Chongqing (grant: cstc2021jcyj-jqX0019 to H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and W.Q. conceived and directed the project. S.H. designed and performed the experiments. S.H. and Z.Z. prepared the Supplementary Information. S.H., Z.Z. and N.Z. analysed and interpreted the experimental data. W.Q., H.Y., Y.L. and Z.Z. wrote the paper. Z.Z. and Y.L. performed the DFT calculations. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wenling Qin, Yu Lan or Hailong Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Choon-Hong Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–26, experimental data, synthesis and characterization data, NMR spectra, X-ray crystallographic data and DFT calculation data.

Supplementary Data 1

Crystallographic data for compound P3e; CCDC reference 1941245.

Supplementary Data 2

Crystallographic data for compound (R)-5; CCDC reference 2141490.

Supplementary Data 3

Crystallographic data for compound (S)-11; CCDC reference 2141488.

Supplementary Data 4

Cartesian coordinates for all optimized structures.

Source data

Source Data Fig. 2

Numerical data for panel c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zeng, Z., Zhang, N. et al. Organocatalytic asymmetric deoxygenation of sulfones to access chiral sulfinyl compounds. Nat. Chem. 15, 185–193 (2023). https://doi.org/10.1038/s41557-022-01120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01120-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing